
Bob Brown has
approximately 15
years’ experience as
a software
researcher and
developer, and in
tertiary-level
lecturing through-
out the world.
Brown is a regular
presenter at confer-
ences and events
and is co-author of
the Prentice-Hall
book JAVA Thin-
Client Program-
ming for a
Network
Computing
Environment.
E-mail:
bob@transentia.
com.au

Brisbane-based
Transentia Pty Ltd
provides specialist
consulting, develop-
ment and training
services in such
technologies as
J2EE, Java, Linux,
CORBA and XML.
Visit: http://www.
transentia.com.au

J2EE introduces a variety of key technologies aimed at making
development of high-end systems easier, says Bob Brown

vendors (including Rational, TogetherSoft and Web-
Gain) are stepping up to the challenge and creating
high-end (typically UML-oriented) design tools that
make it possible to design, develop, deploy and test
complex J2EE-based systems with minimal coding.

A related issue is that Sun wants to foster a
server-based, enterprise-level component market-
place (in much the same way that Microsoft has for
ActiveX and is now developing alongside its .NET
platform). As J2EE advances, we should see the
development and introduction of enterprise-level
‘shrink-wrapped’ software.

A final major driver underlying the J2EE’s
development is the need for software to be
developed according to ‘Internet Speed’. The strong
competitive environment that existed prior to the
Internet crash mandated the rapid development of
correct highly functional software.

Availability
Most of today’s major vendors provide J2EE-com-
pliant application server products, including Sun
(naturally), BEA, IBM, Oracle, HP and Borland. A
number of less well-known players such as Pramati,
Orion and Lutris also offer quality products perhaps
equally capable in many respects but typically at a
much lower cost than for those available from the
first-tier vendors. The Open-Source community is
also well represented with the extremely popular
JBoss application server which, although not an offi-
cially certified J2EE platform, is still widely used and
very well thought of in the J2EE community.

This wide spectrum of high-quality implementa-
tions is one of J2EE’s great strengths: using an
Open-Source tool like JBoss it is possible to start
developing very sophisticated projects for very little

Introduction
Sun Microsystems’ Java 2 Enterprise Edition (J2EE)
is a specification for an open, Object-based middle-
ware platform that is increasingly finding favour and
application as a tool for bringing advanced function-
ality to Web-accessible systems.

Background
From the Web’s earliest days a progression of
technologies ranging from static HTML through
HTML+CGI scripts to Java-based Servlets and
Java Server Pages has emerged. The desire to use
simple resources such as hit counters and direct
two-tier access to stored data has also evolved
into the need to provide scalable multi-tier access
to complex database-based applications and
sophisticated enterprise-level infrastructure such
as SAP/PeopleSoft, etc.

The J2EE arose from Sun’s realisation that
Internet-accessible systems are increasingly being
called upon to provide ever more complex
functionality in ever-shortening timeframes.

While cherry-picking much that was good from
various earlier distributed systems development
platforms (notably CORBA), the J2EE represents a
simplified (but nonetheless extremely powerful)
technology that is augmented with a smattering of
modern object-based ideas.

Tool support for building network-based systems
has always been woefully lacking, making it very
hard to design and model complex systems. To
address this, Sun is attempting to make J2EE
specify both a powerful execution environment for
enterprise applications as well as a framework within
which it is possible to easily create solutions while
relying on powerful tool support. A number of

Under the
J2EE UmbrellaJ2EE Umbrella

technology
methodology ➔➔

J2
EE

| software | april 200256

object that is located in a separate Java Virtual
Machine. The version of RMI now specified by
the J2EE makes use of the mature Internet
Inter-Orb Protocol standard (IIOP) and so
allows Java to interact with systems written in a
variety of other languages: C/C++, SmallTalk,
COBOL, Ada, etc.

Other familiar technologies that have been gath-
ered under the J2EE umbrella and subsequently
augmented include:

✚ Java Servlets – a very common technology
that provides an execution and extensibility
mechanism for the server

✚ Java Server Pages (JSP) – originally a Java
adaptation of Microsoft’s Active Server Pages.
In effect, a JSP is an ‘inverted’ Servlet: where a
Servlet is a Java class that contains processing
logic and may produce HTML, a JSP is an
HTML page that contains embedded Java code.
JSPs provide a presentation/template system and
tool-oriented interface to Java Servlets. They
also help solve the problem where graphic
designers (who are interested in the HTML
markup and look-and-feel of a project) and
developers (who are concerned with the logic
of an application) end up tripping over each
others’ feet while working on the same section
of a project, as they tend to do when Servlets
(which inter-mix markup and logic within one

capital outlay. As the project moves to final deploy-
ment or as the developed system needs to scale, it is
a relatively easy task to move ‘up the food chain’ to a
more powerful and complex platform purchased
from a higher-tier vendor.

Architecture
Currently in version 1.3.1, the J2EE platform pro-
vides a very extensive framework. As shown in
Figure 1, the J2EE incorporates both old and new
technologies.

Since the J2EE is based on the Java 2 Standard
Edition (J2SE), a large proportion of it is familiar to
existing Java developers.

Incorporated into the J2EE from the J2SE are:
✚ Applets – provide for extensible functionality
in a browser

✚ JavaBeans – a tool-oriented technique for
building component-based applications and
frameworks

✚ Java Database Connectivity (JDBC) –
facilitates the use of most SQL-addressable
data sources

✚ Java Naming and Directory Interface
(JNDI) – provides a standardised interface to the
multiplicity of directory services typically found
scattered throughout an enterprise

✚ Java Remote Method Invocation (RMI) –
allows one object to invoke methods on a second

A final major driver underlying J2EE’s
development is the need for software to be
developed according to ‘Internet speed’

Container

J2SE Facilities

Tools Blueprints Patterns

Transactions

Security

Mail

Messaging
Connectors

EJBs JSPs Servlets

Figure 1 J2EE major components

�
technology

methodology ➔➔
J2EE

software | april 2002 |57

✚ Java Connector Architecture (JCA) – sits
beneath the J2EE platform and facilitates the
integration of various high-end information
systems, such as SAP, CICS and Oracle
Financials, allowing them to be plugged into
any J2EE environment and accessed in a
standardised fashion as ‘resources’

EJBs are targeted at developers who wish to be
able to design and build complex Object-based
systems and also at tool suppliers who need clear,
standard APIs with which to work. EJBs are thus
more suited to the needs of the enterprise than Java
Servlets, which essentially only provide a simple
execution mechanism.

J2EE defines three basic types of EJB:
✚ Entity – allows for the definition of persistent
storage services and provides an Object-Rela-
tional mapping facility

✚ Session – represents a client to the application.
The J2EE defines two types of session bean:
stateless session beans often represent a
single-step workflow or provide some general-
purpose functionality for multiple clients,
whereas stateful session beans maintain a
sequence of interactions with a single client
over time.

✚ Message-Driven – provides for asynchronous
invocation of a service

Figure 2 (above) shows the unifying idea behind
the J2EE: that of Model-View-Controller (MVC).
System designs may be decomposed into Models
(sources of data such as a database or file; in the
J2EE world, this is typically modelled as Entity

application) are used for dynamically generating
HTML pages.

Java developers interested in interacting with
legacy Message Oriented Middleware systems, or
who have an interest in supporting asynchronous or
disconnected modes of operation will also be relieved
to know that J2EE incorporates the pre-existing Java
Messaging Service (JMS) and JavaMail technologies.

In addition to gathering together a number of pre-
existing elements, the J2EE introduces a variety of key
technologies aimed at making development of high-
end systems easier. Some of the highlights include:

✚ Java Transaction API (JTA), and Java
Transaction Service (JTS) - JTA provides a
standardised Application Programmer Interface
for transaction handling and JTS effectively
provides a Java implementation of JTA that
supports distributed transactions.

✚ Enterprise JavaBeans (EJB) – a component
architecture for the construction of enterprise-
level services. More on this later.

✚ Custom tags (usually called ‘taglibs’) –
provide a simple way to build reusable code
blocks, and allow for the clear separation of pro-
cessing and presentation within a JSP project.
Taglibs are very valuable in mid-to-large projects
and also for those projects where the look and
feel of a page is in the hands of a designer
whereas the provision of business functionality is
the remit of a separate developer. As with much
of the more recent J2EE activity, custom tags
also provide a foundation for tool developers and
ease the creation of reusable code.

Browser

Java
Applet

Pure
HTML

Desktop

Java
Application

Client-Side
Presentation

Web
Server

Servlet

View / Controller Model

JSP

Server-Side
Presentation

EJB
Container

EJB

EJB

EJB

Server-Side
Business Logic

Figure 2 Model-View-Controller (MVC) in J2EE context

| software | april 200258

technology
methodology ➔➔

J2
EE

The container is responsible for persistence and
relationship maintenance and to provide the ability
to search across persistent stores and to give the
ability to navigate across relationships; the J2EE
defines a new query language, called EJB-QL. This
closely follows the spirit of SQL but is defined
purely in EJB-property terms, making it at least
notionally independent of the underlying persis-
tence mechanism. Figure 4 shows how this is used
within an Entity EJB deployment descriptor to add
a new tool-created method called findLineItems-
GivenQuantity to the EJB.

Note that, being based on XML, deployment
descriptors are (once again) ideal for tool-based
manipulation.

Sun does not talk solely about technology when
defining the J2EE. Its ‘Blueprints’ site
(http://java.sun.com/blueprints) provides an
extensive list of resources covering J2EE guidelines
for implementation, best practices, direct Q&A,
discussions of various patterns appropriate to the
effective design of J2EE-based systems as well as
providing a valuable code resource showing how to
develop end-to-end applications.

To aid in identifying the tasks that must be

EJB), Views (a presentation of the current state of a
model; represented in the J2EE by JSPs/Servlets/
custom tags) and Controllers (manipulators of the
model; typically Servlets, Session EJB or Message-
Driven EJB).

The simplicity of MVC means that it is easy to
design and build for, but at the same time it main-
tains a great deal of flexibility and makes it possible
to evolve a system in the face of new requirements
and changing environments.

A key aspect to the J2EE is control by interposi-
tion: all server-side code ‘lives’ within a container,
which controls all aspects of an EJB or JSP/Servlet’s
existence. It does this by placing itself between all
incoming requests from clients and also between all
interactions with external resources, be they data-
bases, directory services, or other resources.

No code that is developer-written is ever accessed
directly or ever accesses resources directly: as Figure
3 shows, the container mediates everything. (Of
course, to do its job, the container may request
resources and services from the underlying
application server proper.)

The container provides a single point of control
for such system aspects as transactions, security,
concurrency, persistence, relationships and, in some
cases, clustering and failover as well. The API
between the container and the code it wraps is small
and well defined, making it simple to work with and
(returning to the common theme) amenable to tool
utilisation. The container also imposes a well-
defined lifecycle on wrapped code that further eases
the demand on the programmer and simultaneously
eases life for our putative J2EE-aware tool.

While retaining simplicity, the J2EE does not
throw away power. The operation of the container is
easily configured in a declarative fashion by means
of an XML-based deployment descriptor. This pro-
vides configuration information guiding the con-
tainer’s operation. Among other things, it is possible
to specify which individual methods can be invoked
and by whom, which methods should be infected
with a transaction and which should establish a new
transactional boundary, which database table fields
are mapped to particular EJB properties and which
of these should be considered to define relationships
between EJBs and maintained appropriately.

Transaction Management

Persistence Management
Relationships Management

Developed
Component

I
n
t
e
r
f
a
c
e

S
e
c
u
r
i
t
y

M
a
n
a
g
e
m
e
n
t

Incoming
Client

Request

Mediated
Request

Container

Server

Figure 3 Control by interposition

Now is the time to
investigate whether
J2EE is an appropriate
tool for tackling your
organisation’s needs

�

software | april 2002 |59

technology
methodology ➔➔

J2EE

The Future
J2EE is now becoming well-established and is
allowing vendors to re-examine their existing
products. Macromedia have announced that their
popular ColdFusion product will become a value-
added service that runs on existing J2EE application
servers such as those from IBM, Sun, BEA,
Oracle, and Macromedia’s own JRun. IBM has
also recently announced that it will be undertaking
a similar migration for Lotus Notes, which will
closely integrate with its Websphere J2EE applica-
tion server.

The only potential external threat to J2EE’s con-
tinued wellbeing is from Microsoft’s new .NET
technology. At this stage, it is impossible to gauge
how much impact this will have.

One key positive indicator for J2EE is the existence
of an extremely active and vital community of users.
This is reflected in both the growing number of
application servers and commercial products appear-
ing in the marketplace and in the growing amount of
community-sponsored development (products, tools
and design techniques) that is taking place.

J2EE is currently enjoying strong commercial
and community support. The number of J2EE
projects being undertaken both internationally and
within Australia is growing. Now is the time to
investigate whether J2EE is an appropriate tool for
tackling your organisation’s needs.

performed by various parties throughout a project’s
lifecycle, the J2EE platform defines various distinct
roles (these are fairly self-explanatory; a more in-
depth exposition of these roles is given on Sun’s web-
site at: http://java.sun.com/blueprints/
guidelines/designing_enterprise_applications/
platform_technologies/platform_roles) includ-
ing: J2EE Product Provider, Application Compo-
nent Provider, Application Assembler, Deployer,
System Administrator and Tool Provider. Although
a given individual typically performs several roles
as a project progresses, the above breakdown
attempts to guide the definition of responsibilities
and workflow to ensure that all aspects of a system
can be considered, regulated and supported by the
provision of an appropriate tool set.

Issues
Many people cite performance as their main reason
for being wary of the technology. As the J2EE speci-
fication matures and as the vendors’ offerings
become more sophisticated and as people grow to
better understand how to apply it, this is one issue
that may go away over time. When I went to univer-
sity, the common mantra was that SQL databases
simply would not perform sufficiently well for ‘real
world’ applications. Since that time, SQL has
become universal. Performance issues (real or imagi-
nary) have now, for the most part, been devalued. So
it will be with J2EE, I believe.

Of greater concern is the potential for fragmenta-
tion of the marketplace. While the J2EE is standard-
ised and closely shepherded by Sun, the various
vendors and J2EE licensees are introducing sophisti-
cated frameworks that build on top of J2EE: numer-
ous personalisation, commerce and portal frameworks
are being introduced at a rate of knots and without
the guiding influence (good or bad) of a single stan-
dards-setting body. This has the potential to create the
same sort of lock-in that has caused suffering since
commercial computing first arrived: caveat emptor!

FURTHER INFORMATION
http://www.theserverside.com, a very useful site
for understanding latest developments in the J2EE
and server-side infrastructure in general.
Nicholas Kassem, Enterprise Team, Designing Enter-
prise Applications with the Java™ 2 Platform, Enter-
prise Edition, Addison Wesley, 2000 (ISBN
0-201-70277-0).
http://java.sun.com/j2ee, the definitive J2EE site.

<query>
 <query-method>
 <method-name>findLineItemsGivenQuantity</method-name>
 <method-params>
 <method-param>int</method-param>
 </method-params>
 </query-method>
 <ejb-ql>
SELECT OBJECT (o) FROM Orders AS o
 IN (o.lineItems) li WHERE li.quantity = ?1
 </ejb-ql>
</query>

Figure 4 EJB-QL

�

| software | april 200260

technology
methodology ➔➔

J2
EE

