
Toowoomba, Mackay, Townsville, Cairns; June 2000

Bob Brown, bob@asert.com.au

presented by

Software Engineering Australia
in conjunction with

ASERT Consulting Pty. Ltd.

© Bob Brown, Transentia Pty. Ltd.; 2000

2

“…despite all the hype, XML is really just
a new format for data stored in text files.
However, its simplicity, combined with its
platform and application independence,
means that it is being used in an
increasing number of areas where the
exchange of data is required—especially
between disparate systems.”

3

4

� eXtensible Markup Language is:
� a method of structuring data to facilitate open

interchange formats
� like HTML but isn’t HTML

� “HTML without the training wheels…”
� permits developers to “get up to speed” quickly

� text, but isn’t meant to be read by humans
� it is mostly intended for software to parse and manipulate

� actually a family of technologies
� XSL, XLink/XPointer, DOM, Schemas, etc.…

� verbose, but not inefficient
� documents perhaps larger to store but may be more

efficient to process than other formats
� new, but not that new

� traces its roots to the ‘sixties’
� licence-free, platform and vendor neutral

� as all good technologies should be �

5

� describe a document
� typically this has simply meant “make the data

‘pretty.’”
� difficult/impossible to integrate with other business

processes
� XML introduces the idea of markup for processing

purposes
� origins:

� ‘prehistory’:RUNOFF, [ntg]roff, etc.
� ‘70: IBM DCF/GML
� ‘86: SGML/HyTime
� others: rtf, PostScript, proprietary formats
� ~ ‘94: HTML

6

7

� to be easily usable over the Internet
� or any situation requiring data interchange; the

Internet is simply the most ‘trendy’ example…
� must be simpler than SGML

� to support a wide variety of applications
� authoring tools, search engines, databases,

publishing engines, etc.
� to be compatible with SGML

� allows easy adoption; compatible with government
requirements; existing SGML tools can process
XML easily

� it must be easy to process XML
� writing applications is easy; designers originally had

the idea of a “two week” benchmark

8

� should have very few optional features
� ideally zero…

� to be human-readable
� text based

� makes life a lot easier for a developer
� may be marginally less efficient

� SGML allowed strange abbreviations and shortcuts;
terseness is of minimal importance for XML

� XML’s design shall be formal and concise and
also prepared as quickly as possible
� formality should make life easier for everybody
� needs to be defined according to “Internet speed”

� XML documents shall be easy to create
� it should also be easy to make good tools

9

� XML development carried out under auspices
of W3C
� an industry consortium, not a formal standards

body
� W3C recommendations may become true

standards eventually
� “The process…for creating a Recommendation is an

alternative to, and not a replacement for,…the standards
process…”

� XML is in a “state of flux”
� lots of input from many sources

� a few false starts taken
� conflicting vendor ‘interests’
� implementing, testing and evaluating ideas takes

time and effort

10

”RDF

W3C Working DraftInfoset

Version 2.0SAX

”XDR
”XML Schema 1 & 2
”XLink

”XPointer
W3C Candidate RecommendationDOM Level 2

”DOM Level 1
”XPath

”XSLT
”Namespaces

W3C RecommendationXML 1.0

11

� helping to facilitate the move to “a global
information sharing society.”

� relevant throughout a tiered enterprise
architecture
� XML offers a robust solution as the underlying

architecture for data in n-tier architectures
� DBs; B2B;

U2B;
workflows;
documents;
devices; web;
etc., etc.

12

� excels where data has to be interchanged
across heterogeneous boundaries

� arguably of minimal benefit for homogeneous
systems
� why reinvent the wheel?

� doesn’t assume strong coupling
� unlike EDI

� everything is achieved through interchange of documents
� flexible enough for open market “e-commerce”

� “The ASCII of the Future”
� according to Microsoft, that is…

13

14

<?xml version="1.0" ?>
<!DOCTYPE main [
<!ELEMENT main (purchase)*>
<!ELEMENT purchase (date, account, item+)>
<!ELEMENT date (#PCDATA)>
<!ELEMENT account (#PCDATA)>
<!ELEMENT item (itemno, itemdes, quantity)>
<!ELEMENT itemno (#PCDATA)>
<!ELEMENT itemdes (#PCDATA)>
<!ELEMENT quantity (#PCDATA)>
]>
<main>
<purchase>

<date>19-September-1999</date>
<account>Fred_Flintstone</account>
<item>

<itemno>478B</itemno>
<itemdes>3 1/2 Floppy Disk</itemdes>
<quantity>1000</quantity>

</item>
<item>

<itemno>6937A</itemno>
<itemdes>Mouse Pad</itemdes>
<quantity>50</quantity>

</item>
</purchase>

</main>

15

�a document is a
tree
� perfect nesting

required
<?xml version="1.0"?>
<philosophies>
<philosophy ID="1" type="taoism">

Bad Stuff happens...
</philosophy>
<philosophy ID="2" type="pessimism">

You think this is bad stuff? This is just the beginning.
</philosophy>
<philosophy ID="3" type="animism">

We don't need any more bad stuff. Better sacrifice a couple more virgins!
</philosophy>
<philosophy ID="4" type="atheism">

It may appear to be bad stuff but we don't believe it for a moment.
</philosophy>
<philosophy ID="5" type="materialism">

You may have more bad stuff than me, but wait until I go shopping...
</philosophy>

</philosophies>

16

�XML document composed of:
� prologue, elements, entities, processing

instructions and comments
� some are optional, some required
� an important aspect is the possibility of creating

self-describing documents
� may also contain processing code

<?xml version="1.0" ?>
<HAIKU xml:space="preserve">
I'm sorry, there's -- um --

insufficient -- what's-it-called?
The term eludes me ...

-- Owen Mathews
</HAIKU>

17

�prologue
� tells the xml processor about the data

�element
� container for data

�attribute
� associated data or property of container

<SHOE STOCK_ID="X19E435">
<COLOUR>

BROWN
</COLOUR>
<SIZE>

43 Wide
</SIZE>

</EVENT>C
on

ta
in

er
 E

le
m

en
ts

Attribute

Elements & Attributes are more-
or-less interchangeable

<?xml version="1.0" encoding="UTF-8">

18

�commands or information passed
straight to the application that is
processing the XML data
� ignored by XML itself

� the target name “xml” is reserved for use
by XML itself

<PARA>
this element also contains two processing instructions (to allow for
two different processing applications)
<?javascript do something for javascript ?>
<?perlscript do something equivalent for perlscript ?>

</PARA>

<?xml version="1.0"?>

19

�comments facilitate human
comprehension

�CDATA for ‘awkward’ data
�entities mostly provide a simple ‘macro’

facility

<!-- this is a comment -->

<?xml version="1.0"?>
<PROGRAM lang="BASIC">
10 LET A=10
20 LET B=20
30 IF A <![CDATA[<]]>B THEN PRINT A+B
</PROGRAM>

<?xml version="1.0" ?>
<!DOCTYPE MAIN [
<!ENTITY bob "Bob Brown">
]>
<MAIN>
< © > &bob;, Transentia Pty. Ltd., 2000

</MAIN>

20

<ATOM STATE='GAS'>
<NAME>Helium</NAME>
<ATOMIC_WEIGHT>4.0026</ATOMIC_WEIGHT>
<ATOMIC_NUMBER>2</ATOMIC_NUMBER>
<BOILING_POINT UNITS="Kelvin">4.216</BOILING_POINT>
<MELTING_POINT UNITS="Kelvin">0.95</MELTING_POINT>
<SYMBOL>He</SYMBOL>
<DENSITY UNITS="grams/cubic centimeter">
<!-- At 300K -->
0.1785

</DENSITY>
<ELECTRON_CONFIGURATION>1s2</ELECTRON_CONFIGURATION>
…
<THERMAL_CONDUCTIVITY

UNITS="Watts/meter/degree Kelvin">
<!-- At 300K -->
0.152

</THERMAL_CONDUCTIVITY>
</ATOM>

�provides a means to
incorporate external
data

<ATOM STATE="GAS">
<NAME>Hydrogen</NAME>
<ATOMIC_WEIGHT>1.00794</ATOMIC_WEIGHT>
<ATOMIC_NUMBER>1</ATOMIC_NUMBER>
<OXIDATION_STATES>1</OXIDATION_STATES>
…

</ATOM>

<!-- file: Elements.xml -->
<!ENTITY H SYSTEM "h.xml">
<!ENTITY He SYSTEM "He.xml">

<?xml version="1.0" ?>
<!DOCTYPE PerTable [
<!ENTITY % Elements SYSTEM "Elements.xml">
%Elements;
]>
<PerTable>
&H;
&He;

</PerTable>

21

22

� XML’s data modelling facility
� specified by the Document Type Declaration at

the top of a file
� specifies the logical structure of a document

� structure, not semantics or constraints on content
data

� allows a processing application to determine
whether the data contained in an XML is structured
correctly:

� no missing (required) data/attributes
� no extra (unexpected) data
� relationships between different

parts is correct

� creating “self describing documents”

23

� well-formed versus valid XML
� a well-formed document is structurally sound but

may contain other errors
� missing elements, attributes, entities; an unbalanced

document tree; duplicate IDs that should be unique, etc.
� an XML document without an accompanying DTD can

only be checked for “well formed-ness”
� DTD allows correspondence between physical and

logical structure to be checked
� a valid document must be well-formed, plus the

contents of the document must conform to the rules
specified in the DTD

� only if there is an associated DTD can conformance be
checked: “…unlike HTML, the built-in validity checking of
XML allows users to trust the data. Validity checking
makes XML appropriate for transactions, electronic
commerce and inventory management.”

24

�Notables:
� DOCTYPE / root

element
correspondence

� structure symbols
� simple data types
� special notation

for empty elements

<?xml version="1.0"?>
<!DOCTYPE FAMILYTREE [
<!ELEMENT FAMILYTREE (PERSON*)>
<!ELEMENT PERSON (NAME, SPOUSE*)>
<!ATTLIST PERSON

NUM ID #REQUIRED
FATHER IDREF #IMPLIED
MOTHER IDREF #REQUIRED

>
<!ELEMENT NAME (#PCDATA)>
<!ELEMENT SPOUSE EMPTY>
<!ATTLIST SPOUSE

NUM IDREFS #IMPLIED>
]>
<FAMILYTREE>
<PERSON NUM="p1" FATHER="p3" MOTHER="p4">

<NAME>Bob Brown</NAME>
<SPOUSE NUM="p2"/>

</PERSON>
<PERSON NUM="p2" FATHER="p5" MOTHER="p6">

<NAME>Semmi Sin</NAME>
<SPOUSE NUM="p1"/>

</PERSON>
<PERSON NUM="p3">

<NAME>Charlie Brown</NAME>
<SPOUSE NUM="p4"/>

</PERSON>
<PERSON NUM="p4">

<NAME>Marion Brown</NAME>
<SPOUSE NUM="p3"/>

</PERSON>
…<!ELEMENT EMAIL (TO+, FROM, CC*,

BCC*, SUBJECT?, BODY?)>

25

� an XML vocabulary
� overcome the (many!) deficiencies of DTDs

� DTDs have:
� very limited capability to describe the content of a

document
� only concerned with its structure
� weak data typing: pretty much just TEXT
� an important issue for an application such as

dumping/restoring an SQL database
� odd syntax

� effectively a separate language
� increases complexity of parsers

“While XML 1.0 supplies a mechanism, the Document Type Definition (DTD) for declaring
constraints on the use of markup, automated processing of XML documents requires more
rigorous and comprehensive facilities in this area. Requirements are for constraints on
how the component parts of an application fit together, the document structure, attributes,
datatyping, and so on. The W3C XML Schema Working Group is addressing means for
defining the structure, content and semantics of XML documents.”

26

� authors shouldn’t have to learn a new syntax
� the schema language should be expressed in XML;

in comparison, a normal DTD has a special syntax
and so requires special treatment

� also makes life much easier for processing tools
� encourages uptake and allows XML to exist at “Internet

speed”

� schemas should be extensible
� allow for flexible data modelling techniques (such

as OOP)
� schemas should meet the needs of

applications requiring extensive data validation
� such as database interchange; need proper data

types and constraints on data values, etc.

27

� a schema must be able to be built up from
parts coming from many sources
� so that a document can be constructed that

incorporates several specifications and so meets
many requirements

� schemas should encourage reuse
� DTDs can allow reuse but things quickly get messy;

schemas offer a simpler solution
� schemas should be upwardly compatible with

XML 1.0
� minimise “technology churn”
� standard DTDs can still be used, if an application

has simple enough requirements

28

<?xml version="1.0" ?>
<Schema name="CDStoreSchema"

xmlns="urn:schemas-microsoft-com:xml-data"
xmlns:dt="urn:schemas-microsoft-com:datatypes">

<ElementType name="ID" dt:type="string" />
<ElementType name="Title" dt:type="string" />
<ElementType name="Author" dt:type="string" />
<ElementType name="Tracks" dt:type="string" />
<ElementType name="CD" model="closed">

<element type="ID" />
<element type="Title" />
<element type="Author" />
<element type="Tracks" />

</ElementType>
</Schema>

<?xml version="1.0" ?>
<CD xmlns="x-schema:CDStoreSchema.xml">
<ID>1234</ID>
<Title>Actual Miles</Title>
<Author>Don Henley</Author>
<Tracks>13</Tracks>

</CD>

29

30

� attempt to make the definition of
elements/attributes globally unique
� simplify the process of combining portions of

different DTDs: lets you write an XML document
that uses two or more sets of XML tags in modular
fashion

� a simple idea
� give things a (hopefully!) globally unique name

� then <law:bill> and <currency:bill> can define different bills
without conflict…

� similar to Java’s packages

Doc.

DTD

DTD

DTD

31

�each element/attribute is associated
with/grouped into a space which is
named by a URI

�a bit confusing
�controversial

From http://www.xml.com/pub/1999/01/namespaces.html:

“What Do Namespace Names Point At?

One of the confusing things about all this is that namespace names are URLs;
it's easy to assume that since they're Web addresses, they must be the address of
something. They're not; these are URLs, but the namespace draft doesn't care
what (if anything) they point at. Think about the example of the XML.com
programmer looking for book titles; that works fine without the namespace
name pointing at anything.

The reason that the W3C decided to use URLs as namespace names is that they
contain domain names (e.g. www.xml.com), which work globally across the
Internet.”

<?xml version="1.0" ?>
<BOOKS>
<bk:BOOK xmlns:bk="urn:BookLovers.org:BookInfo"

xmlns:money="urn:Finance:Money">
<bk:TITLE>A Suitable Boy</bk:TITLE>
<bk:PRICE money:currency="US Dollar">22.95</bk:PRICE>
<bk:COMMENT>A damn good read!</bk:COMMENT>

</bk:BOOK>
</BOOKS>

32

� “A revolution in the way documents can be
linked.”
� three proposals being worked on; each solves a

different part of the problem
� XML Path Language: XPath

� a comprehensive language for document addressing
� helps obviate the need for predefined structures and targets
� provides a foundation for the next two…

� XML Pointer Language: XPointer
� extends Xpath for use in URIs
� also introduces the ideas of points and ranges in an XML

document
� XML Linking Language: XLink

� a vocabulary allowing the definition of suites of documents
� development slowly gathering pace after a long

delay
� not really supported by any ‘real’ piece of software

� IE5 supports XPath

33

� some problems are inherent in the HTML-style
linking mechanism:
� HTML links are not self-descriptive

� you have no idea what a link will do until it is actuated
� HTML links waste bandwidth when only a portion of

a target document is needed
� need to retrieve whole document and then process it

� HTML links can only return a single target resource
� compare this with many ‘help’ applications that can

present multiple targets
� HTML links are too closely coupled to the structure

of the target document
� a maintenance nightmare; lots of broken links
� difficult for groups of documents to be worked on in

isolation

34

� find all author elements anywhere within the
current document:

� find all bookstores where the value of the
specialty attribute is equal to “textbooks”:

� find all books where the value of the style
attribute on the book is equal to the value of
the specialty attribute of the bookstore
element at the root of the document:

//author

/bookstore[@specialty = "textbooks"]

book[/bookstore/@specialty = @style]

<xsl:if match="vehicle[@type='sports']">
Sports Car

</xsl:if>

35

�a tool for referencing portions of
documents, built on the clean tree
structures of XML documents
� makes it possible to describe a path through

a document tree structure
� can specify single or multiple locations in a

target document
� vocabulary defines five location terms

(addressing styles/mechanisms):
� absolute; relative; string; attribute; span

<simpleLink
xmlns:xlink="http://www.w3.org/2000/xlink"
xlink:type="simple"
xlink:href="doc.xml#xpointer(book/chapter position() <= 5)" />

36

� a flexible vocabulary for connecting
documents and document fragments
� an arbitrary element can be specified as a link

by applying the special xml:link attribute
� the traversal mechanism of an XLink is left

to an associated style sheet to specify
� neither CSS Nor XSL currently provide facilities

that can be used to define such a mechanism!

37

<elink xml:link="extended">
Minivan review
<elocator title="Carrier 9000" href="9000.html" />
<elocator title="Super Loader" href="super.html" />
<elocator title="Fill-O-Matic 7" href="7.html" />

</elink>

(simulated)

XLink.html

9000.html

super.html

7.html

links may be bidirectional

<link xml:link="extended" show="replace" actuate="user">
<xl:locator href="sample.xml" role="data"/>
<xl:locator href="sample.xsl" role="stylesheet"/>
<xl:locator href="sample.sch" role="schema"/>
Replace the contents of the current window with the xml data,
using the specified stylesheet and schema...

</link>

38

<?xml version="1.0"?>
<SLIDESHOW>
<SLIDE TITLE="Welcome to the slide show!">

<BUTTON xml:link="simple" href="origin().following(1,SLIDE)">
Next

</BUTTON>
</SLIDE>
<SLIDE TITLE="This is the second slide">

<BUTTON xml:link="simple" href="origin().preceding(1,SLIDE)">
Previous

</BUTTON>
<BUTTON xml:link="simple" href="origin().following(1,SLIDE)">

Next
</BUTTON>

</SLIDE>
<SLIDE TITLE="This is the second slide">

<BUTTON xml:link="simple" href="origin().preceding(1,SLIDE)">
Previous

</BUTTON>
<BUTTON xml:link="simple" href="origin().following(1,SLIDE)">

Next
</BUTTON>

</SLIDE>
...
<SLIDE TITLE="This is the last slide">

<BUTTON xml:link="simple" href="origin().preceding(1,SLIDE)">
Previous

</BUTTON>
</SLIDE>

</SLIDESHOW>

39

� xml:stylesheet
� two complementary

additional technologies
provide rendering
mechanisms
� Cascading Style Sheets

� introduced for HTML
� support is still patchy,

however

� XSL
� an XML-specific

technology
� very new and in

constant state of
change

From http://www.w3c.org/Style/CSS-vs-XSL.html:

“Why does W3C recommend two different style languages?
…

Use CSS when you can, use XSL when you must.
…
CSS is much easier to use, thus easier to maintain and cheaper. …
Some things you cannot do with CSS, or with CSS alone. Then you
need XSL, or at least the transformation part of XSL”

40

�a no-brainer…
ITEM { display:block; margin:15px }

CODE { display:inline;
font-family:Tahoma,Arial,sans-serif;
font-size:10pt;
font-weight:bold }

CATEGORY { display:inline;
font-family:Tahoma,Arial,sans-serif;
color:darkgray;
font-size:12pt;
font-weight:bold }

RELEASE { display:inline;
font-family:Tahoma,Arial,sans-serif;
color:red;
font-size:10pt }

TITLE { display:inline;
font-family:Tahoma,Arial,sans-serif;
font-size:12pt;
color:white;
background-color:black }

SALES { display:none }

<?xml version="1.0"?>
<?xml:stylesheet

type="text/css"
href="booklist.css"?>

<BOOKLIST>
<ITEM>
<CODE>16-048</CODE>
<CATEGORY>Scripting</CATEGORY>
<RELEASE>1998-04-21</RELEASE>
<TITLE>Instant JavaScript</TITLE>
<SALES>375298</SALES>

</ITEM>
<ITEM>
<CODE>16-105</CODE>
<CATEGORY>ASP</CATEGORY>
<RELEASE_>1998-05-10</RELEASE>
<TITLE>Instant ASP</TITLE>
<SALES>297311</SALES>

</ITEM>
<ITEM>
<CODE>16-041</CODE>
<CATEGORY>HTML</CATEGORY>
<RELEASE>1998-03-07</RELEASE>
<TITLE>Instant HTML</TITLE>
<SALES>127853</SALES>

</ITEM>
</BOOKLIST>

41

�a vocabulary for expressing stylesheets
� various components and relationships

� XSL Transformations (XSLT)
� transforms one XML document tree into another XML

document tree
� specifies patterns and applies templates to the

matches
� Formatting objects

� concerned with rendering/formatting an XML tree
� XPath

XSL
XSLT

XPath XPointer

FO

42

<?xml version = "1.0" ?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xsl">
<xsl:template match="/">
<html>
<body>
<xsl:for-each select="company/dept">
<p>
Department:
<xsl:apply-templates select="@code" />

</p>
<p>
Manager:
<xsl:apply-templates
select="emp[@role='manager']/name" />

</p>
<p>Others:</p>

<xsl:for-each select="emp[@role!='manager']">
Employee (<xsl:value-of select="@role"/>):

<xsl:apply-templates select="name" />
</xsl:for-each>

</xsl:for-each>
</body>

</html>
</xsl:template>
<xsl:template match="name">
<xsl:apply-templates select="first" />
<xsl:apply-templates select="middle" />
<xsl:apply-templates select="last" />
<xsl:define-template-set>
<xsl:template match="first">
<xsl:value-of />

</xsl:template>
<xsl:template match="middle">
<xsl:value-of />.

</xsl:template>
<xsl:template match="last">
<xsl:value-of />

</xsl:template>
</xsl:define-template-set>

</xsl:template>
<xsl:template match="@code">
<xsl:value-of />

</xsl:template>
</xsl:stylesheet>

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="Company.xsl"?>
<company>

<dept code="software">
<emp role="manager">

<name>
<first>Fred</first>
<last>Flintstone</last>

</name>
<salary>80000.50</salary>

</emp>
<emp role="programmer">

<name>
<first>Joe</first>
<last>Hacker</last>

</name>
<salary>42000.00</salary>

</emp>
</dept>
<dept code="strategy">

<emp role="manager">
<name>
<first>Poin</first>
<middle>T</middle>
<last>Hair</last>

</name>
<salary>100000.00</salary>

</emp>
<emp role="artist">

<name>
<first>Leonardo</first>
<last>Bloggs</last>

</name>
<salary>13000.99</salary>

</emp>
<emp role="secretary">

<name>
<first>Felicity</first>
<last>Typewell</last>

</name>
<salary>22000.10</salary>

</emp>
</dept>

</company>

43

44

� two different styles of processing
� Document Object Model (DOM)

� W3C standard
� level 1 recommended in October 1998
� work on level 2 underway

� based around the notion of a document tree
� flexible; resource-hungry; fiddly

� actually two sets of interfaces
� core
� HTML

� Simple API for XML (SAX)
� an open-source, community developed system

� released May 1998
� widely used

� sees a document as a stream of events that may be
handled as needed

� efficient; simple; fast

45

import java.sql.*;
import com.datachannel.xml.om.*;

public class SQLDumper
{
static

{ try { Class.forName ("com.ms.jdbc.odbc.JdbcOdbcDriver"); } catch (Exception e) {} }
public static void main (String [] args) throws Exception

{
Document doc = new Document ();
doc.appendChild (doc.createProcessingInstruction ("xml", "version=\"1.0\""));
doc.appendChild (doc.createComment ("Created: " + new java.util.Date ()));
IXMLDOMElement root = (IXMLDOMElement) doc.createElement ("MESSIER");
DocumentType.createDocumentType (doc, "MESSIER SYSTEM \"MessierDTD.dtd\"");
doc.appendChild (root);
Statement statement =

DriverManager.getConnection ("jdbc:odbc:The Messier Database",
"Messier", "MessierMan").createStatement ();

ResultSet rs = statement.executeQuery ("SELECT * FROM [The Messier Objects]");
while (rs.next ())

{
int id = rs.getInt ("ID");
IXMLDOMElement child = (IXMLDOMElement) doc.createElement("M");
child.setAttribute ("ID", "" + id);
IXMLDOMElement c = (IXMLDOMElement) doc.createElement ("CONSTELLATION");
c.appendChild (doc.createTextNode (rs.getString ("Constellation")));
child.appendChild (c);
IXMLDOMElement d = (IXMLDOMElement) doc.createElement ("DESCRIPTION");
d.appendChild (doc.createTextNode(rs.getString ("Object Type")));
child.appendChild (d);
root.appendChild (child);
}

System.out.println (doc.getXML());
}

}

46

import org.xml.sax.*;
import org.xml.sax.helpers.ParserFactory;

class MessierHandler extends HandlerBase
{
private static final String descTagName = "DESCRIPTION";
private int nGalaxies = 0;
private boolean inDescriptionElement = false;
public void endDocument ()

{
System.out.println ("There are " + nGalaxies + " Messier galaxies.");
}

public void startElement (String name, AttributeList atts)
{
inDescriptionElement = name.equals (descTagName);
}

public void endElement(String name)
{
inDescriptionElement = ! name.equals (descTagName);
}

public void characters (char ch [], int start, int length)
{
if (inDescriptionElement && new String (ch, start, length).endsWith ("alaxy"))

nGalaxies ++;
}

}

public class SAXCount
{
public static void main (String [] args) throws Exception

{
Parser parser = ParserFactory.makeParser ("com.ibm.xml.parsers.SAXParser");
parser.setDocumentHandler (new MessierHandler ());
parser.parse (args [0]);
}

}

47

48

� MS came to the XML plate fairly quickly
� supports much of what we have looked at already:

� CSS level 1/some level 2 (“spotty support”)
� DOM level 1
� XSL
� Schemas
� Namespaces
� CDF
� VML
� XML Data Islands

� XML embedded in HTML
� also some ‘cool’ supporting features

� HTML+TIME
� XPath
� etc.

� many of these are “technology previews”
� changeable; not standards compliant

� but at least there is something to tinker with…
� MS is upgrading support all the time

49

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
<html>
<head>

<title>NamedNodeMap Processing</title>
<xml id="CD" src="CD.xml"></xml>
<script for=window event=onload>

<!--
div.innerHTML = "";
var xmlDoc = document.all("CD").XMLDocument;
var root = xmlDoc.documentElement
var attrs = root.attributes;
div.innerHTML += "Title: " +

attrs.getNamedItem("title").text + "
";
div.innerHTML += "Artist: " +

attrs.getNamedItem("artist").text + "
";
div.innerHTML += "Date: " +

attrs.getNamedItem("date").text + "
";
div.innerHTML += "Number of tracks: " +

attrs.getNamedItem("ntracks").text + "
";
-->

</script>
</head>
<body>

<p>
<DIV ID="div"></DIV>

</p>
</body>

</html>

<?xml version="1.0"?>
<CD title="Surfing with the Alien"

artist="Joe Satriani"
date="1987"
ntracks="10" />

50

�nothing for Navigator 4…all XML work
carried out in Mozilla
� good support for CSS
� DOM level 1
� RDF support

� XUL (eXtensible User interface Library)
� simple XLink

� permits transclusion…
� embedded documents

51

52

� XML is not just a
browser-based tool;
also valuable at the
server side
� makes it possible to

deploy content in
XML and transform it
to HTML on demand
for “down-level”
clients

� will probably be one
of the major uses

<%@ LANGUAGE = "JScript" %>
<%

// Set the source and style sheet locations here
var sourceFile = Server.MapPath("simple.xml");
var styleFile = Server.MapPath("simple.xsl");

// Load the XML
var source=

Server.CreateObject("Microsoft.XMLDOM");
source.async = false;
source.load(sourceFile);

// Load the XSL
var style =

Server.CreateObject("Microsoft.XMLDOM");
style.async = false;
style.load(styleFile);

// do the transformation
Response.Write(source.transformNode(style));

%>

53

54

�bringing XML further into vertical and
horizontal markets by providing tools &
frameworks, schema distribution
mechanisms, steering organisations, etc.
� Schema.net
� RosettaNet
� Biztalk.org

� Microsoft’s “No Glue” initiative
� CommerceNet
� OASIS

55

56

�supporting equations was part of the
original goal of the World-Wide Web

“…MathML has a dual purpose: to provide a
standard for mathematics on the Web and to
provide a mathematical notation, which
encapsulates the content of the mathematics as
much as possible. The equations can then be used
where they sit in a document or can be pulled from
a document to be used in an entirely different
application.”

<math>
<mrow>

<mi>y</mi>
<mo>=</mo>
<mi></mi>
<mfrac href="http://www.w3.org/" xml:link="simple">

<mn>1</mn>
<msqrt>

<mrow>
<msup>

<mi>x</mi>
<mn>2</mn>

</msup>
<mo>+</mo>
<mn>1</mn>

</mrow>
</msqrt>

</mfrac>
</mrow>

</math>

57

�presentation markup
� making marked-up data look nice

� 28 MathML presentation elements, with about 50
attributes

�content markup
� capturing the ‘meaning’ of the equation in a

form suitable for automated processing
� around 75 content markup elements, with about

a dozen attributes

58

�a vocabulary for describing two-
dimensional graphics in XML
� intended to replace bitmapped graphics
� much work is being done on producing SVG

tools
� Adobe, Corel, etc. producing export filters and

browser plug-ins
� Microsoft also promotes its own format, VML…

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG December 1999//EN"

"http://www.w3.org/Graphics/SVG/SVG-19991203.dtd">
<svg width="12cm" height="4cm" viewBox="0 0 1200 400">

<desc>Example rect02 - rounded rectangles expressed in user coordinates</desc>

<rect x="100" y="100" width="400" height="200" rx="50"
style="fill:green;" />

<g transform="translate(700 300); rotate(-30)">
<rect x="0" y="0" width="400" height="200" rx="50"

style="fill:none; stroke:purple; stroke-width:30" />
</g>

</svg>

59

� Synchronised Multimedia Integration
Language
� a vocabulary for the creation of multimedia

presentations
� W3C recommendation; not widely adopted

� Quicktime 4.1 and RealPlayer G3 are the only common
applications

� SMIL documents are ‘glue’ that tell a player
application which resources to retrieve and when
they should be presented

� relies on stylesheets for formatting, etc.
� metadata ‘switch’ element allows SMIL software to

adapt to different platform/bandwidth conditions
� percieved to be isolated/too ‘academic’

� doesn’t fit in well with DHTML, etc.

60

<smil>
<head>

<layout>
<root-layout width="640" height="480" background-color="black" />
<region id="logo" left="20" top="5" width="100" height="50" />
<region id="vidbk" left="200" top="50" width="150" height="76"

background-color="#330033" z-index="1" />
<region id="video" left="210" top="55" width="100" height="70"

background-color="#000000" z-index="3" />
<region id="ccbk" left="20" top="200" width="400" height="30"

background-color="#666600" z-index="2" />
<region id="ccscroll" left="21" top="210" width="350" height="25"

fit="fill" z-index="2" />
</layout>

</head>
<body>

<par>
<seq>

<par>

</par>
<par>

<video src="video.avi" region="logo" fill="freeze" />
<text src="cctext.txt" region="ccscroll" fill="freeze" />

</par>
</seq>

</par>
</body>

</smil>

61

�proposed to W3C by Microsoft,
Macromedia & Compaq
� attempt to overcome SMIL’s perceived

shortcomings with respect to browsers
� allows time attributes to be applied to any

element
�supported in IE5

<HTML>
<HEAD>
<STYLE TYPE="text/css">

.time { behavior:url(#default#time); }
</STYLE>
<XML:NAMESPACE PREFIX="t"/>
</HEAD>
<BODY>
<DIV CLASS="time" t:REPEAT="3" t:DUR="8" t:TIMELINE="par">

<DIV CLASS="time" t:BEGIN="0" t:DUR="4">First line of text.</DIV>
<DIV CLASS="time" t:BEGIN="2" t:DUR="4">Second line of text.</DIV>
<DIV CLASS="time" t:BEGIN="4" t:DUR="4">Third line of text.</DIV>
<DIV CLASS="time" t:BEGIN="6" t:DUR="4">Fourth line of text.</DIV>

</DIV>
</BODY>
</HTML>

62

� a key part of WAP
� allows for the

presentation and
delivery of data and
telephony services
on mobile wireless
terminals

� a WML document is
composed of a deck,
and a deck contains
multiple cards

<?xml version="1.0"?>
<!DOCTYPE WML PUBLIC "-//WAPFORUM//DTD WML 1.1//EN“

"http://www.wapforum.org/DTD/wml_1.1.xml">
<wml>

<card id="card1" title="Example 1">
<!-- a card can only contain P or DO blocks -->
<p>

<do type="accept" label="go to card 2">
<go href="#card2"/>

</do>
This is the first card.

</p>
</card>

<card id="card2" title="Example 1">
<p>
This is the second card.

</p>
</card>

</wml>

63

� Object-Object Protocols growing in popularity
� DCOM, CORBA, RMI, etc.

� good in an intranet situation; bad for the internet: require
gaping holes to be left in an organisation’s firewall

� SOAP aims to allow any OO protocol to
‘tunnel’ through port 80
� used for the World-Wide Web and already open at

many sites
� uses XML to define the format of request and

response messages and then allows the use
of the normal HTTP POST command to send
this information
� “What is SOAP if not basically a more object-

oriented, somewhat buzzword-compliant upgrade
to CGI?”

64

boolean PlaceOrder([in] Title string,
[in] Author string,
[out] DaysToDelivery integer);

send

POST /BookServer HTTP/1.1
Host: www.qwickbooks.com
Content-Type: text/xml-SOAP
Content-Length: nnnn
SOAPMethodName: Some-Namespace-URI#PlaceOrder

<SOAP:Envelope xmlns:SOAP="urn:schemas-xmlsoap-org:soap.v1”>
<SOAP:Body>

<m:PlaceOrder xmlns:m="Some-Namespace-URI”>
<Title>Happy All The Time</Title>
<Author>Laurie Colwin</Author>

</m:PlaceOrder>
</SOAP:Body>

</SOAP:Envelope>

reply

HTTP/1.1 200 OK
Connection: close
Content-Type: text/xml
Content-Length: nnnn

<SOAP:Envelope xmlns:SOAP="urn:schemas-xmlsoap-org:soap.v1”>
<SOAP:Body>

<m:PlaceOrderResponse xmlns:m="Some-Namespace-URI”>
<return>1</return>
<DaysToDelivery>7</DaysToDelivery>

</m:PlaceOrderResponse>
</SOAP:Body>

</SOAP:Envelope>

65

� Resource Description Framework:
� a foundation for processing metadata

� data about data
� provides facilities to enable automated processing

of Web resources
� useable in a variety of application areas:

� resource discovery to enhance search engines
� for describing the content and content relationships

available at a particular Web site, or digital library
� in describing collections of pages that represent a single

logical “document”
� by intelligent software agents to facilitate knowledge

sharing and exchange
� in content rating
� RDF plus digital signatures will be key to building the

“Web of Trust” for electronic commerce, collaboration, and
other applications

66

<?xml version="1.0"?>
<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:s="http://description.org/schema/">
<rdf:Description about="http://www.transentia.com.au/Home/Bob">

<s:Creator>Bob</s:Creator>
</rdf:Description>

</rdf:RDF>

“Bob is the creator of the resource http://www.transentia.com.au/Home/Bob”
subjectpredicateobject

http://jigsaw.w3.org:8000/description

67

68

� people and organisations must see the value
of XML
� as they did with HTML

� but now we need more than “pretty pictures”...

� better tools must become available
� “...the web browser must become a stable building

block for site designers, just as standardisation on
Windows has encouraged innovation in the PC
space.”

� “We have to live in the present, and therein lies the
problem with XML and browsers.”

� standardization needs to continue
� and then be adopted properly

69

“It’s evident that XML is finding its way into every facet of the
software industry. It’s becoming an integral part of database
technologies (such as DBMS and ADO), remote procedure call
mechanisms such as SOAP, and business-to-business
integration and messaging software such as BizTalk™. XML is
showing up in Web browsers and servers such as Internet
Explorer 5.0 and Internet Information Services 5.0, and many
other domain-specific applications.”

“The XML family of standards will emerge as the
dominant technical foundation by year-end 2000,
continuing support of pre-existing HTML documents, but
used in the creation of new documents and document
applications (0.6 probability).”

70

71

� The W3C’s definitive site for XML
http://www.w3c.org/XML

� Microsoft’s XML site http://msdn.microsoft.com/xml
� The XML Cover page

http://xml.com/xml/pub/coverpage/newspage.html
� XMLSoftware

http://xmlsoftware.com

