
| software28

➔ technology

An SOA is a three-legged stool built
on three rapidly developing tech-
nologies: the Simple Object Access
Protocol (SOAP), WebServices and
Universal Discovery, Description
and Integration (UDDI). Each of
these technologies, in turn, relies on
XML, the eXtensible Markup Lan-
guage, which is being promoted by
the World Wide Web Consortium
(W3C1) as a standard mechanism
for facilitating data interchange.

The promise is great: once they
mature, these technologies should
make it possible to build self-
describing services that can be
accessed in a protocol and lan-
guage-independent way, and that
can be advertised in a searchable
and browseable directory.

All the major vendors, including
Microsoft, IBM, Oracle, Sun and
BEA, are (at the moment, at least)
lining up behind this group of tech-
nologies, and so it is possible to
hope for a future free of the vendor-
driven COM/ CORBA/Java ‘object
wars’ that have crippled all previous
attempts at building large-scale,
open interoperable systems.

Let us take a look at each of the
legs of the stool in turn.

SOAP
At first sight, SOAP is an unimpres-
sive and, some might say, obvious
idea. Where in the past we built
systems that interacted using care-
fully designed and specified binary-
formatted data, SOAP interchanges
simple textual messages formatted
using a relatively straightforward

XML-based schema. Where 
previously we carried our data 
over optimised, carefully controlled 
protocols, SOAP is not similarly
constrained: SOAP has been
designed to make it possible to
exchange SOAP-encoded data
using standard HTTP. If security 
is important, SOAP can use the
standard secure HTTP protocol to
protect its data exchanges. 
SOAP can even exchange data using
SMTP, if asynchronous 
interchange is useful.

This ability to utilise common,
well-known transport mechanisms
is one of SOAP’s strengths and
means that we do not need to worry
about infrastructural issues like fire-
walling and routing new protocols.

Because the SOAP interchange
format is simply XML-formatted
text, it can be manipulated in a
straightforward way by almost any
programming language. Implemen-
tations exist for many languages,
including Java, C/C++, C#, Ada,
COBOL and PERL. In stark con-
trast to earlier technologies like
EDI, SOAP messages are text and
can be debugged very easily. 

Since SOAP is still a young tech-
nology, it has its share of teething
problems, primarily a perceived lack
of security, performance problems
and interoperability between imple-
mentations.

The most common answer to
questions about SOAP’s security
shortcomings is: “It’s not its job.”
Recall that SOAP delegates the
transport of messages to one of the

Much media attention is currently being devoted to Service Oriented
Architectures (SOAs). Bob Brown examines the major technologies
that underlie what has been called ‘the grown-up Internet’

Bob Brown, director
of Transentia Pty
Ltd, has about 15
years’ experience as
a software
researcher and
developer and in
tertiary-level lectur-
ing throughout the
world. Brown is a
regular presenter at
conferences and
events and is co-
author of the Pren-
tice-Hall book JAVA
Thin-Client Pro-
gramming for a Net-
work Computing
Environment. Bris-
bane-based
Transentia Pty Ltd
provides specialist
consulting, develop-
ment and training
services in such
technologies as
J2EE, Java, Linux,
CORBA and XML. 
Visit: 
www.transentia.com.au
E-mail: 
bob@transentia.com.au

Service Oriented
Architectures

existing standard Internet protocols.
SOAP messages are perfectly at
home being carried across links
secured by SSL/TLS or other
secure infrastructure. Much work is
being done to permit the use of
Digital Signatures with SOAP. In
these ways, the designers of SOAP
have clearly followed their number-
one tenet: “First invent no new
technology.” Performance is one
area where much remains to be
done. Experiments done at Indiana
University2 show that, since SOAP
messages rely on XML, they tend
to suffer from low data density. 
An eight-byte double may require
up to 80 bytes when carried as 
payload in a SOAP message. 
Moreover, IBM has estimated that
an average SOAP message will 
run to about 60K. Clearly, the
‘grown-up Internet’ is going to
require high-bandwidth links!
Memory and processing power will
be needed for SOAP as well. Indi-
ana University’s experiments have
shown that encoding and decoding
SOAP data can take up to 10 times
the amount of memory and be up to
100 times slower than for an equiv-
alent Java Remote Method Invoca-
tion application.

Interoperability is an issue that
also needs to be examined. There
are currently about 70 different
implementations of SOAP from as
many organisations. There are
bound to be many problems crop-
ping up as the various developers
get their implementations ‘bedded
down’ and ready for serious work.



technology ➔

software|29

Developers are starting to organise
‘Interoperathons’ to test their
implementations against their com-
petitors software and to show the
world that SOAP is ready for the
big time.

WebServices
SOAP makes it possible for a 
service to interact with another 
service, regardless of the underlying
network transport, implementation
language or operating system. For a
fully open, dynamic, grown-up
Web, this is not enough. In a global
Internet where trading partners
need to come together in an ad hoc
manner and where systems are
assembled from numerous third-
party services, applications should
be able to self-configure according
to the needs of the service with
which they are interacting. As the
second leg of our stool, WebSer-
vices allows for this.

With WebServices, a service that
wishes to advertise its existence does
so using a ‘résumé’ written in the
XML-based Web Services Descrip-
tion Language (WSDL). A WSDL
definition contains various stanzas
defining the service, specifying
incoming and outgoing message
formats, message sequences and
which transport protocols are sup-
ported by the service.

Since WSDL fully defines a ser-
vice, it becomes possible to generate
automatically the code required to
drive the service as and when the
need arises. The WebServices
toolkits from vendors such as
Microsoft and the Apache group
already provide such functionality,
making it relatively easy to build
client applications.

Like SOAP, WebServices are
still immature. The main outstand-
ing issues surrounding WebServices
include manageability and high-
level authentication/authorisation.
In addition, when a system is com-
prised of many WebServices whose
location and qualities are potentially

dynamic, the issues of testing,
debugging, profiling, etc. take on a
whole new dimension.

UDDI
The remaining leg of our stool is
the most controversial and so far
the most under-defined. Universal
Discovery, Description and Integra-
tion is a common set of SOAP APIs
that enable the implementation of 
a universally accessible service 
broker. Although not yet fully 
specified, UDDI aims to provide
repositories for WebServices along
with tools and APIs, making it 
possible to publish WebServices,
and allowing for various types of
searching (white-pages, yellow-
pages and green-pages [looking up
dynamic configuration information]
styles are all defined).

What makes UDDI so 
potentially controversial is that 
the organisation that controls 
the repository also controls the
associated marketplace by virtue of
being able to control who gets
included into a repository and by
being able to influence and priori-
tise the outcome of searches. Simi-
lar behaviour is seen in some Web
search engines today, but since
UDDI is a technology targeted
much more towards large-scale
business, the stakes are higher. This
is, of course, a potentially powerful
and highly profitable position. Not
surprisingly, the larger organisa-
tions such as Microsoft and IBM
are all keeping a close watch on this
technology!

Critics of UDDI also charge that
the technology is not needed and
maintain that enterprises do not
need to be able to discover trading
partners dynamically but instead
need to be able to work more effi-
ciently with the partners they
already have. Ken Vollmer in Inter-
netWeek3 has summed up this posi-
tion nicely: “UDDI’s problem:
Technology Cannot Replace 
Relationships.”

Current activity
Many vendors are rallying behind
the WebServices banner. Microsoft
is basing a large amount of its forth-
coming .NET infrastructure on this
technology. Microsoft has provided
impressive support for WebServices
in its Visual Studio.NET develop-
ment tool. IBM (an enthusiastic
supporter of WebServices through
the Apache group) has an equally
useful, though not as polished, set
of Java-based toolkits. Oracle is
supporting WebServices under the
banner of ‘Dynamic Services’. Sun
Microsystems is late but is catching
up quickly: its Java APIs for XML
Registries (JAXR) API specification
provides a convenient API that
developers can use to access reg-
istries, including UDDI registries.
The W3C is coordinating a lot of
standards-oriented activity under
the auspices of the XML Protocol
Working Group. 

Under the .NET banner,
Microsoft is planning to introduce a
set of Hotmail-like services that it is
calling ‘Hailstorm’. These services
will enable a number of user-centric
applications such as myAddress,
myContacts, myInbox and 
myCalendar. 

In the Java world, most J2EE
application server vendors are pro-
viding support for WebServices,
permitting Servlets and EJBs to be
accessed via SOAP in addition to
the more traditional HTTP/RMI
protocols.

Conclusion
Although some commentators 
have dismissed SOAs as being
merely the latest fad, they are
undoubtedly a technology that is
here to stay. The major unanswered
question is whether they actually
correspond to the real needs of the
industry at large or whether they
merely represent a vendor-driven
mechanism aimed at maintaining
control in an increasingly open
Internet. ■

REFERENCES:
1 www.w3c.org
2 www.extreme.indiana.edu/
soap/sc00/paper/paper

3 www.internetweek.com/
columns01/beat062001.htm


