
Toplink

• Bob Brown, Transentia Pty. Ltd.
• Paul King, ASERT Pty. Ltd.

Positioning

l Persistence Manager & Toolkit
l Sits on top of JDBC
l Permits flexible Object/Relational mapping
l Integrated application server support

l Oracle9iAS, Weblogic Server, Websphere…
l To be part of standard installation in 9.0.4

l (history…)
l Smalltalk & The Object People, Webgain
l Now Oracle…

l Extensive feature set
l (as we’ll see…)

Problems

l Two/three/n-tier architecture
l Dealing with

l Complex relationships
l Disparate data sources

l SQL/not
l Legacy code/data
l Various technologies
l Change

l Need to partition systems
l Disparate skill sets; custodians of data/systems; etc.

‘The object world and the relational world do not
match up. One world consists of tables, rows,
columns, and foreign keys; the other world contains
object references, business rules, complex
relationships, and inheritance. This is often referred
to as the object/relational “impedance mismatch”.’

Key Indicators

l If your database/data model changes
frequently

l If you are writing an off-the-shelf application
which needs to map with customers'
database/data models which aren't known until
deployment time

l If you need loose coupling between
developers (who can create nice OO models)
and DBAs (who can optimise store behaviour)

Benefits

l Little impact on ideal application design
l Design to business needs rather than be forced by a particular approach to

satisfy persistence needs
l Code-Free Integration

l XML-metadata driven approach
l Supports bean-to-bean and bean-to-object and object-to-object relationships

directly
l Provides for data-driven transforms

l Cut Development Time
l A large proportion of a project’s development time & cost is associated with

persistence mechanisms
l Graphical Mapping Workbench tool
l Can auto-generate mapping code

l Permits tuning and optimisation of persistence mechanism
l Claim is “up to 500%”…

Benefits…

l Leverage Current Developer Skills
l Provides several querying options so can use

whatever is ‘natural’: SQL and stored procedures;
Toplink’s TOP Expression framework; EJB-QL, etc.

l Avoid Writing Infrastructure Code
l Provides a variety of locking strategies
l Sequence number management
l Logging facilities
l Distribution
l Application Server Integration
l Support for non-CMP/EJB architectures

Advanced Mapping Support

l Object relationships differ from database relationships
l difficult to map by hand

l Toplink supports 15 mapping types, including:
l Mappings to handle object/relational types as defined by

JDBC
l Arrays, etc.

l Direct to Field, One to One, One to Many, Many to Many
l Any kind of key relationships in database supported including

intermediate tables
l Object Type, Transformations

l Enumeration ('Male' maps to 'M') or conversions (e.g. String to
Number or Boolean)

l Others
l Serialized mappings, direct collections, stored procedures

Mappings…

l Inheritance
l Not supported in ‘straight’ J2EE environments
l Allows a subclass to reside in the same table as its superclass or be

in a different table
l Queries and relationships based on abstract classes
l Class/subclass information maintained when reading/writing

l Interface
l Queries and mappings can be defined on Interfaces rather than

concrete classes
l Allows heterogeneous types to be mapped via interfaces

l Aggregations
l Multiple objects/beans per row
l Map an object/bean to multiple tables
l Mapping across databases

‘Indirect’ Mappings

l Allows “on-demand” retrieval
l Improves performance
l Not invisible

l Although catered for by the mapping workbench
l Direct/method access to ValueHolders
protected Address address;
public Employee() {

address = null;
}
public Address getAddress() {

return address;
}
public void setAddress(Address address) {

this.address = address;
}

protected ValueHolderInterface address;
public Employee() {

address = new ValueHolder();
}
public Address getAddress() {

return (Address)address.getValue();
}
public void setAddress(Address address) {

this.address.setValue(address);
}

Mapping Workbench

l Toplink IDE
l Assists developers in defining how objects

map to the database
l Currently separate from JDeveloper; will be

incorporated in later releases

Workbench…

l Allows for rapid development and prototyping
l Classes can be imported into the Mapping

Workbench
l Can generate a schema from the object model

l Database meta-data can be read in through a
JDBC connection
l Can generate a plain Java object model or one based on

Enterprise Java Beans

l Can identify inconsistent mappings or missing
information

Workbench…

Object-Level Querying

l SQL doesn’t cut the mustard for querying
across collections of Java objects

l ExpressionManager
l Can build sophisticated queries at the

object-level, rather than using SQL or JDBC
ExpressionBuilder emp = new ExpressionBuilder();

Expression exp = emp.get("address").get("street").equal("Meadowlands Drive");
Vector employees = session.readAllObjects

(Employee.class,exp.and(emp.get("salary").greaterThan(10000)));

SELECT t0.VERSION, t0.ADDR_ID, t0.F_NAME, t0.EMP_ID, t0.L_NAME, t0.MANAGER_
ID, t0.END_DATE, t0.START_DATE, t0.GENDER, t0.START_TIME, t0.END_TIME,
t0.SALARY FROM EMPLOYEE t0, ADDRESS t1 WHERE (((t1.STREET = 'Meadowlands')
AND (t0.SALARY > 10000)) AND (t1.ADDRESS_ID = t0.ADDR_ID))

Querying…

l “Query By Example”
l Allows for queries to be specified by

providing sample instances of the persistent
objects to be queried

l Can constrain/modify the operation via
additional policies
ReadAllQuery query = new ReadAllQuery();
Employee employee = new Employee();
employee.setFirstName("B%");
employee.setLastName("S%");
employee.setSalary(0);
query.setExampleObject(employee);
QueryByExamplePolicy policy = new QueryByExamplePolicy();
policy.addSpecialOperation(String.class, "like");
policy.alwaysIncludeAttribute(Employee.class, "salary");
query.setQueryByExamplePolicy(policy);
Vector results = (Vector) session.executeQuery(query);

Uses LIKE operator for
String comparisons and
includes the salary even if
it is zero

Querying…

l Can interact with stored procedures
l Very important for opening up legacy

stores/applications

StoredProcedureCall call = new StoredProcedureCall();
call.setProcedureName("CHECK_VALID_POSTAL_CODE");
call.addNamedArgument("POSTAL_CODE");
call.addNamedOutputArgument("IS_VALID");
ValueReadQuery query = new ValueReadQuery();
query.setCall(call);
query.addArgument("POSTAL_CODE");
Vector parameters = new Vector();
parameters.addElement("L5J1H5");
Number isValid = (Number) session.executeQuery(query,parameters);

Transactions

l Provides a transaction framework
l Associates a “Unit of Work” with a database

session
l Enhances database commit performance

by tracking and updating only the
changed portions of an object

Performance/Tuning

l “Just-in-Time” reading
l Delay reading the related objects until used
l If an object is never referenced, the resources required to

read in the object are never used
l Object Caching

l Eliminates the need for a database call if the object is
requested within a timeout period

l Several different types of caches and they can be set on a
class-by-class basis

l (A)Synchronous mechanisms ensure cache consistency in a
clustered environment

l Batch operations
l Efficient ‘blocked’ cursor operations

Performance…

l Features are available to set options such as:
l Ordering
l Query optimization (batch reading, joining)
l Cursors
l Refreshing, caching options
l Pessimistic locking
l Outer joins
l Nested sub-selects
l Parameter binding, statement caching
l Can specify custom SQL

l Query can be run “in memory” against cache

Toplink vs. EJB 2.x CMP
• EJB 2.0 does not provide a persistence

solution for common Java
architectures:

– Regular Java objects using Servlets
and JSPs

– Session Beans accessing "regular"
Java business objects

– Entity Beans using Bean Managed
Persistence

– Mapping data to non-database stores
• Facilitates and manages persistence in

both EJB and non-EJB architectures

• Considerable advantages over the
basic EJB 2.0 specification:

– Complete freedom to mix entity
beans with lightweight Java objects

– Better performance
– Enhanced developer productivity

with visual Mapping Workbench
– Support for database features such

as stored procedures and outer-joins
– Optimized transactions and

database interaction
– In-memory querying support
– Ability to use same concepts on

non-CMP architectures
– Advanced, sophisticated mapping

support
– Flexible optimistic and pessimistic

locking strategies
– Reporting framework

http://www.webgain.com/products/toplink/whitepapers/addvalueover_ejb2.html

http://www.webgain.com/products/toplink/whitepapers/addvalueover_ejb2.html

Toplink and CMP

l Think of Toplink as a very configurable
persistence manager for the container
‘TopLink Container-Managed Persistence provides a number of entry
points for advanced customization of mappings, logins, and other aspects
of persistence. These can be used to take advantage of advanced TopLink
features, JDBC driver features, or to gain “low-level” access to TopLink
for Java APIs that are normally masked in the container-managed
persistence layer.’

Remote Toplink Sessions

l Brings ‘server-side’ functionality to a client
application
l Client-side caching and object identity
l Client-side units of work

with nested and parallel
support

l Remote proxies for on-
demand loading of object
relationships from the server

l Complex querying
support on the client

Future

l Continue to support JDBC-compliant databases
l Oracle, IBM DB2, MS SQL Server, Sybase, Informix and Microsoft Access, etc.

l Continue to support standalone Java applications
l Continue to support J2EE-compliant application servers including Oracle9iAS,

IBM WebSphere, and BEA WebLogic
l CMP integration with 9iAS, WebSphere & WebLogic

l Expand support of hardware platforms
l Solaris, NT/Windows 2000, HP-UX, Tru64, AIX, Linux

l Better JTA integration
l Support for Oracle9iAS connection pooling
l Oracle9iAS/OC4J CMP & BMP entity bean support
l Enhanced support for the Oracle 9i database and JDBC drivers
l Mapping Workbench to be integrated with JDeveloper

