
Bob Brown

Microservices Transentia Pty. Ltd.
bob@transentia.com.au
http://www.transentia.com.au

1

mailto:bob@transentia.com.au
http://www.transentia.com.au

2

Do YOU suffer from MONOLITHS?

3

Do YOU suffer from MONOLITHS?
Do YOU have trouble satisfying your boss?

4

Do YOU suffer from MONOLITHS?
Do YOU have trouble satisfying your boss?

Do YOU have trouble scaling up sometimes?

5

Do YOU suffer from MONOLITHS?
Do YOU have trouble satisfying your boss?
Do YOU have trouble scaling up sometimes?

Are you TIRED of all those clever salesmen, with their silver bullets
and their EXPENSIVE patent nostrums?

6

YOU NEED ALL NEW Microservices!

PREMISE
The current crop of “Enterprise

Solutions” have not delivered bang-

for-buck, while being so large &

complex that not even the best

developers can produce high-quality

software within time and budget.

PROMISE A “back to basics” approach with modern technologies can get us to where we need to go easier & faster, with far nicer programmer ergonomics and with a better end result.

7

What Is?

8

An approach to developing a single service
application as a suite of small services,
each usually running in its own process
and communicating with lightweight

mechanisms, usually an HTTP resource
API. These services are built around

business capabilities, may be written in
different programming languages and use
different data storage technologies. They

are typically highly reliable, adhere to
fundamental DevOps principles for their

runtime management and are deployed via
highly automated processes.

Adapted from: http://www.thoughtworks.com/insights/blog/microservices-nutshell

http://www.thoughtworks.com/insights/blog/microservices-nutshell

Assertions/Statements
❖ fine grained SOA architecture done the UNIX way
❖ it’s NOT about size
❖ it’s not always about processes; shared libraries sometimes rule harder…
❖ human comprehension…small enough to fit in your head
❖ distributed objects for hipsters
❖ it’s just SOA done {right,wrong}
❖ SOA without the vendor bulls4!t

9

Assertions/Statements…
❖ Microservices are not strictly defined and that's the beauty. It is a lightweight style of implementing

SOA that works.
❖ the word “monolith” that’s dreaded by architects has a very positive air from the customers perspective
❖ …a triangulation on ideal practices for app development, paying particular attention to the dynamics of

the organic growth of an app over time, the dynamics of collaboration between developers working on
the app’s codebase, and avoiding the cost of software erosion

❖ for every person who thinks they are doing micro-services, I bet I can find someone who would argue
they should have split it up more (or less).

❖ Any piece of functionality that is in danger of being built more than once in an organization (think
authentication, user management, etc.) in a classic stovepipe architecture is a candidate for a micro-
service (or set of micro-services as the case may be).

10

Reactive Manifesto 2.0
❖ Today’s demands are simply not met by yesterday’s software architectures.
❖ Reactive Systems are:

❖ Responsive: The system responds in a timely manner if at all possible.
❖ Resilient: The system stays responsive in the face of failure.
❖ Elastic: The system stays responsive under varying workload.
❖ Message Driven: Reactive Systems rely on asynchronous message-passing to

establish a boundary between components that ensures loose coupling, isolation,
location transparency, and provides the  
means to delegate errors as messages.

11 http://www.reactivemanifesto.org/

http://www.reactivemanifesto.org/

Livin’ The Dream

12

Still Dreamin'

Netflix , which is a very popular video streaming service that’s responsible for up to 30% of
internet traffic, has a large scale, service-oriented architecture. They handle over a billion calls per
day to their video streaming API from over 800 different kinds of devices. Each API call fans out
to an average of six calls to backend services.

Amazon.com originally had a two-tier architecture. In order to scale they migrated to a service-
oriented architecture consisting of hundreds of backend services. Several applications call these
services including the applications that implement the Amazon.com website and the web service
API. The Amazon.com website application calls 100-150 services to get the data that used to
build a web page.

The auction site ebay.com also evolved from a monolithic architecture to a service-oriented
architecture. The application tier consists of multiple independent applications. Each application
implements the business logic for a specific function area such as buying or selling.

13 http://microservices.io/patterns/microservices.html

Evolution
❖ we started with:

14

plain old 2-tier, DCE, CORBA, J(2)EE, .Net, …

Evolution.
❖ then we paid lots of $ for the privilege of building this:

15
ESBs FTW…

Evolution..
❖ …and we probably really ended up with this:

16
ESBs FTW…Really?

Evolution…
❖ so let’s try this:

❖ the Entity-Control-Boundary pattern

17
Ahhh…

❖ but beware:

Evolution….

18
Ahhh…the march of progress!

Is This For You(r Organisation)?
❖ a microservice may exist as/promote an organisational silo

❖ silos! organisations like silos!
❖ conway’s law

❖ “…organizations which design systems … are constrained to produce  
designs which are copies of the communication structures of these  
organizations.”

❖ brooks’ assertion
❖ “…product quality is strongly affected by organization structure.”

❖ houghson’s warning
❖ “Just don’t buy too deeply into the idea that by getting the responsibilities of your software right, that you will somehow

reduce the impact that all of that business dysfunction has on you as a software developer. Part of the maturation
process for a company is cleaning up its business processes in parallel to cleaning up its software processes.”

❖ THE uber-rant from Steve Yegge about Amazon/Google: https://plus.google.com/+RipRowan/posts/eVeouesvaVX

19

https://plus.google.com/+RipRowan/posts/eVeouesvaVX

Yes!
❖ You’re already using micro services

❖ bitbucket, github, etc.

20

http://w
w

w.adam
-bien.com

/roller/abien/

It’s Time!
❖ cheaper/faster n/w and h/w
❖ the almighty Cloud

❖ there’s some amazing stuff out there now
❖ docker and like tools
❖ focus on developer ergonomics

❖ adoption of DevOps
❖ adoption of Agile and a new need for simplicity
❖ ascendancy of REST/JSON
❖ rise of micro frameworks…sinatra, spring boot, dropwizard, ratpack, node.js…

❖ pick the best developers { }, rather than the best available developer in scheme X

21

A
dr

ia
n

Cr
oc

kf
or

d

It’s Time!…
❖ IoT

❖ lots of (permanently) connected devices
❖ lots of small data packets
❖ but resulting in big data

❖ rise of dynamic languages/features
❖ ruby, groovy, python, etc. getting looked at more seriously
❖ java, c# adopting more coolness

❖ but where are you on the scalability spectrum?
❖ not everyone needs to be a netflix
❖ not everyone can afford to be an amazon
❖ affirmation therapy for the enterprise: sometimes monoliths are OK

22

Jumped Sharks?

23
14.13Gb!

A Single Business Capability
❖ having a single business reason to change
❖ having minimal dependencies
❖ having minimal impact upon the rest of the estate
❖ accessing standardised facilities/cross-cutting  

concerns that are also micro services
❖ security, configuration, health checks,  

caching, logging…

24

Data Ownership
❖ encapsulates its own data: bounded data context
❖ look beyond ACID

❖ become comfortable with eventual consistency
❖ scheduled updates, event-driven propagation, caching

❖ become comfortable with duplication
❖ not a problem, per. se.: better to be more concerned with partitioning and amenability to

substitution
❖ but: hard to know which data is authoritative

❖ reporting, etc. made more troublesome
❖ an opportunity to refactor the query of despair?

25

“There are two hard things in
computer science: cache
invalidation, naming things, and
off-by-one errors.”

Data Ownership…
❖ embrace multiple co-existent “canonical models”

❖ canonical models ignore extant usecases and usage patterns
❖ (esp. latter) can kill utilisation

❖ There will never be only one. You will never control the whole world. Deal!
❖ (shipping)product vs. (billing)product
❖ (vendor-a)address vs. (vendor-b)address, (t0)policy vs. (t1)policy, etc.

❖ learn to love polyglot persistence

26

Service Interactions
❖ recognise common life cycles
❖ recognise locality of reference

❖ “town planning” model
❖ asynchrony/event-driven important, say some

❖ reduces blocking: increase throughput/power ratio
❖ convert hard dependencies to soft ones: increases resilience

❖ prevent ‘dangelberries’ leading to “slumbering herds”
❖ contentious : eschew explicit choreography/orchestration

❖ underlying feelings/fears: thar be vendors(== $$$, lock-in)/bottlenecks

27

Service Interactions…
❖ micro-level

❖ strictly ports&adapters  
(Cockburn’s ‘hexagonal’)  
architecture

❖ service is oblivious to source 
or destination of request/response

❖ macro-level
❖ adopt the Entity-Control-Boundary pattern

28

http://microservices.io/patterns/microservices.html

http://alistair.cockburn.us/Hexagonal+architecture

http://microservices.io/patterns/microservices.html
http://alistair.cockburn.us/Hexagonal+architecture

Be Of The Web, Not Behind The Web
❖ “standardise the gaps between the services”

❖ standard protocols/APIs: HTTP, REST, simple MQ, protocol buffers, etc.
❖ technology of implementation is irrelevant

❖ java, c#, PERL, PHP, ruby, groovy, RDBMS, NoSQL, flat files, etc., etc., etc.,…all OK
❖ but: can does NOT imply should! don’t become a technology zoo…

❖ small means easy to adopt “latest & greatest”
❖ overcome fear

❖ quick to deliver, quick to change
❖ disposable services
❖ fowler: design to be strangled out of existence once service is deemed ‘legacy’

❖ ‘surgical’ updates; continuous delivery; YAGNI

29

Smart Endpoints & Dumb Pipes
❖ traditional: Enterprise Service Bus (ESB) products

❖ Swiss army knife approach; sophisticated facilities for message routing, choreography, transformation, with
complex protocols such as WS-Choreography or BPEL or orchestration by a central tool

❖ Easy to sell: “just plug into this and all will be fine…”
❖ Difficult to make perform
❖ Difficult/expensive to push to the cloud

❖ microservices
❖ aim to be as decoupled and as cohesive as possible—they own their own domain logic and act more as filters

in the classical Unix sense: receiving a request, applying logic as appropriate and producing a response
❖ no service locator furphy: simple choreography
❖ no WS-* hell: simple RESTish protocols

30

KISS?

❖ a web application with an in-process back-end can be load-
balanced much more simply than separate UI and service
sites, without suffering the performance penalty of remote
communication
❖ also has fewer/easier failure modes, etc

31

http://genehughson.wordpress.com/2014/08/22/fears-for-tiers-do-you-need-a-service-layer/

http://genehughson.wordpress.com/2014/08/22/fears-for-tiers-do-you-need-a-service-layer/

Eight Fallacies Of Distributed Computing
❖ L Peter Deutsch, Sun fellow, 1994

❖ The network is reliable.
❖ Latency is zero.
❖ Bandwidth is infinite.
❖ The network is secure.
❖ Topology doesn't change.
❖ There is one administrator.
❖ Transport cost is zero.
❖ The network is homogeneous.

32
http://www.rgoarchitects.com/Files/fallacies.pdf

These assumptions ultimately
prove false, resulting either in the
failure of the system, a substantial
reduction in system scope, or in

large, unplanned expenses required
to redesign the system to meet its

original goals.

Nanoservice Anti-Pattern
❖ immediate source of fear!
❖ cause: not accounting for all fallacies in problem space

❖ making assumptions: infinite bandwidth, zero latency, no errors, perfect
understanding, etc….

❖ granularity so fine that overhead outweighs utility
❖ communications, maintenance, monitoring, etc. all up
❖ performance/utilisation down

❖ fragmented logic
❖ complexity gets out of control

33

Fowler’s first Law of Distributed Object Design: “don't distribute your objects.”  
http://martinfowler.com/articles/distributed-objects-microservices.html

ht
tp

://
w

w
w.

tig
er

te
am

.d
k/

20
14

/m
icr

o-
se

rv
ice

s-
its

-n
ot

-o
nl

y-
th

e-
siz

e-
th

at
-m

at
te

rs
-it

s-
al

so
-h

ow
-y

ou
-u

se
-th

em
-p

ar
t-1

/

http://martinfowler.com/articles/distributed-objects-microservices.html

No! Just No!

34

String do(String arg)

Scalability Cube

35

Scalability Cube…
❖ X-axis scaling

❖ run multiple copies of an application behind a load balancer
❖ state, caching issues

❖ Y-axis scaling
❖ splits the application into multiple, different services, each responsible for a single function

❖ verb-based decomposition: define services that implement a single use case (‘classic’ SOA?)
❖ decompose by noun: create services responsible for all operations related to a particular entity (REST SOA?)

❖ Z-axis scaling
❖ each server runs an identical copy of the code against only a subset of the data

❖ sharding/partitioning criteria, routing/aggregation issues
❖ greater resiliency (tolerate partial failure), but greater complexity

36 “The key to being a cloud-native application is being scalable on all three of those axes”, http://www.ekho.me/news/ekho-kent-langley-techops-article/

http://www.ekho.me/news/ekho-kent-langley-techops-article/

12-Factor App
❖ 12factor.net

❖ liberate the micro services from your monoliths

37

http://12factor.net

Danger! Will Robinson!
❖ duplication of effort

❖ may need to be an Amazon to support overhead
❖ distributed systems are complex

❖ proven too complex for some, historically
❖ asynchrony/choreography is difficult!
❖ need more sophisticated

❖ infrastructure
❖ (DevOps,management)teams

38

“There is a law of conservation of
complexity in software. When we
break up big things into small
pieces we invariably push the
complexity to their interaction.”

Dependent Upon DevOps
❖ substantial DevOps/cross-functional team skills required

❖ continuous delivery
❖ Amazon

❖ “you build it, you run it”
❖ “two-pizza team” projects

❖ templated deployments
❖ make docker your new best friend
❖ adopt to encapsulate learning, not to freeze stacks

39

Monitoring, Not Testing
❖ you have to get MUCH better at monitoring…

❖ Coda Hale: metrics, health checks, etc.
❖ …and control; adaptive systems

❖ Netflix: lots of services means having lots of ‘canarys’ and alternatives
❖ “production is the best  

test environment”
❖ Netflix: hysterix for  

“resilience engineering”
❖ Netflix: circuit-breaker

40

Monitoring, Not Testing…
❖ design for failure, not to avoid it (‘cos you can’t avoid it)

❖ Netflix: simian army/chaos monkey
❖ and chaos Gorilla

41

“…it may well be the case that the only thing still functioning in the server is the little component
that knows how to say "I'm fine, roger roger, over and out" in a cheery droid voice.”—Yegge

“Failures happen, and they inevitably happen when least desired. If your
application can't tolerate a system failure would you rather find out by being paged

at 3am or after you are in the office having already had your morning coffee?”

— https://github.com/Netflix/SimianArmy/wiki/Chaos-Monkey

https://github.com/Netflix/SimianArmy/wiki/Chaos-Monkey

Whither Agile?

42

“…bedrock principles
of Agile have been
rendered unnecessary,
something that…
surprised us.”

http://www.slideshare.net/fredgeorge/micro-service-architecure

Technology
❖ a plethora!
❖ frameworks

❖ wrap your actual code in a just-good-enough communication layer, plus
support tooling
❖ ratpack, dropwizard, spring boot, vert.x, node.js, sinatra, gilliam, etc.

❖ deployment
❖ flockport, docker, puppet, vagrant, ansible, etc.
❖ fabric8, http://fabric8.io/gitbook/overview.html

43

The Rise of the Full-Stack Architect
http://dejanglozic.com/2014/05/12/the-rise-of-the-full-stack-architect/

tweetable full data-driven rest
application with Grails 3

http://fabric8.io/gitbook/overview.html
http://dejanglozic.com/2014/05/12/the-rise-of-the-full-stack-architect/

Ratpack REST-Style MicroService

44

ratpack {
 bindings {
 add new JacksonModule(); add new AbstractModule() { … bind(FelineStore).in(SINGLETON) … };
 add new CodaHaleMetricsModule().jmx().console()

 init { FelineStore felineStore -> … }
 }

 handlers { FelineStore datastore ->
 get("api/felines/count") {
 blocking { datastore.size() }
 .then { render json(count: it) }
 }
 handler("api/felines/:id?") {
 def id = pathTokens.id?.safeParseAsLong()
 byMethod {
 get {
 blocking { id ? datastore.get(id) : datastore.list(request.queryParams) }
 .then { if (it != null) render json(it) else clientError(404) }
 }
 }
 post {
 blocking { def f = parse Feline; datastore.add(f) }
 .then { render json(it) }
 }
 delete {
 blocking { id ? datastore.delete(id) : null }
 .then { clientError(it ? 204 : 404) }
 }
 put {
 blocking { def f = parse Feline; f.id = id; f.id ? datastore.update(f) : null }
 .then { clientError(it ? 204 : 404) }
 }
 }
 }
 get {
 render groovyTemplate("grid.html", title: "AngularJS + Ng-grid + Bootstrap + Ratpack REST")
 }

 assets "public"
 }
}

Ratpack MicroService…

45

Cool Places To Visit
❖ Tools

❖ Netflix Open Source Software Center: http://netflix.github.io/
❖ Soundcloud developer site: https://developers.soundcloud.com/
❖ Twitter blogs: https://blog.twitter.com/developer
❖ Amazon developer tools: https://aws.amazon.com/developertools/

❖ Links
❖ http://wayfinder.co/pathways/53536427f7040a11002ae407/a-field-guide-to-microservices-april-2014-edition
❖ http://blog.arkency.com/2014/07/microservices-72-resources/
❖ http://www.mattstine.com/microservices
❖ http://microservices.io/
❖ http://blog.devopsguys.com/2013/07/17/devops-antifragility-and-the-borg-collective/
❖ https://blog.yourkarma.com/building-microservices-at-karma
❖ http://www.tigerteam.dk/2014/micro-services-its-not-only-the-size-that-matters-its-also-how-you-use-them-part-1/

46

http://netflix.github.io/
https://developers.soundcloud.com/
https://blog.twitter.com/developer
https://aws.amazon.com/developertools/
http://wayfinder.co/pathways/53536427f7040a11002ae407/a-field-guide-to-microservices-april-2014-edition
http://blog.arkency.com/2014/07/microservices-72-resources/
http://www.mattstine.com/microservices
http://microservices.io/
http://blog.devopsguys.com/2013/07/17/devops-antifragility-and-the-borg-collective/
https://blog.yourkarma.com/building-microservices-at-karma
http://www.tigerteam.dk/2014/micro-services-its-not-only-the-size-that-matters-its-also-how-you-use-them-part-1/

Final Thought

47

“The Empire has always been a realm of colossal resources. They’ve calculated
everything in planets, in stellar systems, in whole sectors of the Galaxy. Their generators

are gigantic because they thought in gigantic fashion.

“But we—we, our little Foundation, our single world almost without metallic resources—
have had to work with brute economy. Our generators have had to be the size of our

thumb, because it was all the metal we could afford. We had to develop new techniques
and new methods—techniques and methods the Empire can’t follow because they have

degenerated past the stage where they can make any vital scientific advance.

“With all their nuclear shields, large enough to protect a ship, a city, an entire world; they
could never build one to protect a single man. To supply light and heat to a city, they
have motors six stories high—I saw them—where ours could fit into this room. And
when I told one of their nuclear specialists that a lead container the size of a walnut

contained a nuclear generator, he almost choked with indignation on the spot.

“Why, they don't even understand their own colossi any longer. The machines work from
generation to generation automatically and the caretakers are a hereditary caste who

would be helpless if a single D-tube in all that vast structure burnt out.”

― Isaac Asimov, Foundation

The End.
(Of my session…the beginning of your microservices journey?)

48

Media Acknowledgements
❖ Slide 6: http://monashlss.com/sites/default/files/2014/page/new.png 

Slide 6: http://www.dgsimports.net.au/images/detailed/1/dgs_new_cat.png
❖ Slide 7: http://thecollegestartup.com/wp-content/uploads/2012/08/feature-bloat.png  

Slide 7: http://www.knighton-tools.co.uk/acatalog/06900.jpg
❖ Slide 8: http://static.comicvine.com/uploads/original/8/80292/3711653-why_not_zoidberg__by_nogard00-d5523p1.jpg
❖ Slide 9: http://www.Slideshare.net/mohitthatte/microservices-rubyconf2013
❖ Slide 11: logos of respective organisations
❖ Slide 18: http://martinfowler.com/articles/microservices.html
❖ Slide 20: http://www.Slideshare.net/pini4/microservices-and-the-future-on-infrastructure?related=5a 

Slide 20: http://www.Slideshare.net/adriancockcroft/qcon-new-york-speed-and-scale
❖ Slide 22: http://www.Slideshare.net/jeppec/soa-and-event-driven-architecture-soa-20  

Slide 22: http://www.campusmvp.net/wp-content/uploads/2013/02/large-model.png 
Slide 22: http://www.oracle.com/us/products/middleware/soa/overview/index.html  
Slide 22: http://www.opengroup.org/togaf/

❖ Slide 26: http://oskarkorczak.blogspot.com.au/2014/03/growing-applications-handled-by-micro.html
❖ Slide 27: http://alistair.cockburn.us/Hexagonal+architecture
❖ Slide 32: http://www.tigerteam.dk/2014/micro-services-its-not-only-the-size-that-matters-its-also-how-you-use-them-part-1/
❖ Slide 34: http://microservices.io/articles/scalecube.html
❖ Slide 35: http://www.infoq.com/articles/microservices-intro
❖ Slide 37: http://www.zerohedge.com/article/danger-danger-will-robinson
❖ Slide 38: http://www.virtualizationpractice.com/topics/agile-cloud-development/ 

Slide 38: http://blog.devopsguys.com/2013/07/17/devops-antifragility-and-the-borg-collective/
❖ Slide 39: http://techblog.netflix.com/2012/11/hystrix.html
❖ Slide 40: http://www.slideshare.net/fredgeorge/micro-service-architecure slide 38:
❖ Slide 43: http://www.ratpack.io/
❖ Slide 47: http://ynaija.com/11-amazing-benefits-and-uses-of-walnuts/
❖ Slide 48: http://simpsons.wikia.com/wiki/File:Best-simpsons-gifs-world-without-lawyers.gif

49

http://monashlss.com/sites/default/files/2014/page/new.png
http://www.dgsimports.net.au/images/detailed/1/dgs_new_cat.png
http://thecollegestartup.com/wp-content/uploads/2012/08/feature-bloat.png
http://www.knighton-tools.co.uk/acatalog/06900.jpg
http://static.comicvine.com/uploads/original/8/80292/3711653-why_not_zoidberg__by_nogard00-d5523p1.jpg
http://www.Slideshare.net/mohitthatte/microservices-rubyconf2013
http://martinfowler.com/articles/microservices.html
http://www.Slideshare.net/pini4/microservices-and-the-future-on-infrastructure?related=5a
http://www.Slideshare.net/adriancockcroft/qcon-new-york-speed-and-scale
http://www.Slideshare.net/jeppec/soa-and-event-driven-architecture-soa-20
http://www.campusmvp.net/wp-content/uploads/2013/02/large-model.png
http://www.oracle.com/us/products/middleware/soa/overview/index.html
http://www.opengroup.org/togaf/
http://oskarkorczak.blogspot.com.au/2014/03/growing-applications-handled-by-micro.html
http://alistair.cockburn.us/Hexagonal+architecture
http://www.tigerteam.dk/2014/micro-services-its-not-only-the-size-that-matters-its-also-how-you-use-them-part-1/
http://microservices.io/articles/scalecube.html
http://www.infoq.com/articles/microservices-intro
http://www.zerohedge.com/article/danger-danger-will-robinson
http://www.virtualizationpractice.com/topics/agile-cloud-development/
http://blog.devopsguys.com/2013/07/17/devops-antifragility-and-the-borg-collective/
http://techblog.netflix.com/2012/11/hystrix.html
http://www.slideshare.net/fredgeorge/micro-service-architecure
http://www.ratpack.io/
http://ynaija.com/11-amazing-benefits-and-uses-of-walnuts/
http://simpsons.wikia.com/wiki/File:Best-simpsons-gifs-world-without-lawyers.gif

