

WebServices with OC4J

Simple Development with Oracle’s J2EE
Environment

Unit 1, 40 Skew St. Mobile: 0416 078 813 ACN: 091-142-880
Sherwood Phone/FAX: (07) 3278 5890 ABN: 680-911-428-80
Queensland 4075 Email: contact@transentia.com.au
Australia WWW: www.transentia.com.au

t r a n s e n t i a Developed by:

© Transentia Pty. Ltd., 13/12/2002 10:34 PM 1

Exercise

5
WebServices with OC4J
Simple Development with Oracle’s J2EE Environment

Introduction

This session shows how to develop Oracle WebServices “by hand.” Effectively, you will
be going “behind-the-scenes” and looking at the basic functionality of Oracle’s OC4J
system. Tools like JDeveloper cover up much of the requisite activity, but it is often
useful to see what is going on.

In this session you will use Oracle’s OC4J J2EE container “by hand” to create and
execute a simple WebService. You will also develop a simple client that makes use of
the WebService.

Setting Up

In this session you will need:

n Oracle’s OC4J 9.0.3

OC4J is incorporated into JDeveloper 9i and so the easiest way to get this will be to
install JDeveloper. JDeveloper 9i 9.0.3 (or greater) will be provided to you and
should be installed prior to starting the exercise below.

Installation is easy: Simply unzip the supplied file to create a directory hierarchy
rooted at C:\jdev903.

Populate Development Directories

Open a Command Prompt window and then execute the following command to set up a
new directory for you to ‘play’ in (in this sheet the DOS command prompt is shown as >,
you should not type this directly. This command assumes that your CD-ROM is
accessible via drive Z:):

> xcopy /e/i "Z:\Exercises\5 OC4JWS\framework" C:\OC4JWS

This directory contains a number of empty files for you to edit, alongside a number of
‘boilerplate’ files that you can examine but that should not be changed.

You should do all your work within the C:\OC4JWS directory.

© Transentia Pty. Ltd., 13/12/2002 10:34 PM 2

Simple WebService

Much of the “business functionality” of the application you will build is contained in a very
simple Java class.

Create the Bean Class

Edit the empty skeleton file C:\OC4JWS\Haikus\src\transentia\HaikuWS.java. The
content should be as follows:

package transentia;

public class HaikuWS
 {
 private Haiku[] haikus =
 {
 new Haiku("I'm sorry, there's -- um --\n" +
 " insufficient -- what's-it-called?\n" +
 " The term eludes me ...",
 "Owen Mathews"),
 new Haiku ("The code was willing,\n" +
 " It considered your request,\n" +
 " But the chips were weak.",
 "Barry L. Brumitt"),
 new Haiku("The Tao that is seen\n" +
 " Is not the true Tao, until\n" +
 " You bring fresh toner.",
 "Bill Torcaso")
 };

 // This method is exposed as a web service.
 public Haiku getHaiku()
 {
 return (haikus[(int)(Math.rint(Math.random() *
 (haikus.length - 1)))]);
 }
}

Points to Note

n this is a very simple Java class…it contains no infrastructurally imposed overhead
code

Create the Interface Definition File

The interface defines the functionality that is to be exposed as a web service.

Edit the empty skeleton file C:\OC4JWS\Haikus\src\transentia\IHaikuWS.java. The
content should be as follows:

package transentia;

public interface IHaikuWS
 {
 public Haiku getHaiku();
 }

© Transentia Pty. Ltd., 13/12/2002 10:34 PM 3

Create the Haiku JavaBean

The Haiku JavaBean is a simple package for the data that constitutes a Haiku: a string
containing the poem itself and a string containing the author’s name.

Edit the supplied skeleton file C:\OC4JWS\Haikus\src\transentia\Haiku.java. The
content should be as follows:

package transentia;

import java.util.StringTokenizer;
import java.io.Serializable;

public class Haiku
 implements Serializable
 {
 public String haiku;
 public String author;

 public Haiku()
 {
 this("","");
 }

 public Haiku(String newHaiku, String newAuthor)
 {
 haiku = newHaiku;
 author = newAuthor;
 }

 public String getHaiku()
 {
 return (haiku);
 }

 public void setHaiku (String haiku)
 {
 this.haiku = haiku;
 }

 public String getAuthor()
 {
 return (author);
 }

 public void setAuthor (String author)
 {
 this.author = author;
 }

 public String toString()
 {
 return (haiku + "\n" + author);
 }
 }

© Transentia Pty. Ltd., 13/12/2002 10:34 PM 4

Create the WebServices Generator Tool Configuration File

Like most vendors, Oracle supplies a simple tool that is used to generate automatically
all the various pieces of infrastructure required by a WebService. Oracle’s
“WebServicesAssembler” tool is configured by a simple XML file.

Edit the config file C:\OC4JWS\Haikus\config.xml to become as follows:

<web-service>
 <display-name>Haiku Web Service</display-name>
 <description>Haiku WebServices Exercise</description>

 <destination-path>./haikuws.ear</destination-path>

 <temporary-directory>./tmp</temporary-directory>

 <context>/haikuws</context>

 <stateless-java-service>
 <interface-name>transentia.IHaikuWS</interface-name>
 <class-name>transentia.HaikuWS</class-name>
 <uri>HaikuWS</uri>
 <java-resource>./classes</java-resource>
 </stateless-java-service>
</web-service>

Points to Note

n The WebServicesAssembler tool will automatically create an “Enterprise ARchive”
file whose name is specified in the config.xml file (./haikuws.ear).

Build and Execute I

Time to go!

You have been provided with a number of build/execute scripts to make the overall
process substantially easier (i.e. less typing to do ☺).

Start OC4J

Open a new Command Prompt window and execute the following command sequence:

> cd /d C:\OC4JWS\Haikus
> bin\oc4j.cmd

When OC4J is up and running, the Command Prompt window should resemble the
following screen:

© Transentia Pty. Ltd., 13/12/2002 10:34 PM 5

You will need to keep OC4J running throughout this exercise.

Build the Web Service

Open a new Command Prompt window and execute the following sequence:

> cd /d C:\OC4JWS\Haikus
> bin\build.cmd

Deploy the Web Service

In the same Command Prompt window issue the following command:

> bin\deploy.cmd

You should now see both Command Prompt windows reflect the new system state, as
shown here:

Investigate the Deployed Service

Open a new web browser window and point it to http://localhost:8988/haikuws/.

You will see an automatically generated page containing a single link:

Click on the “stateless Java web service - /haikuws/HaikuWS” link to be taken to
the “IHaikuWS endpoint” page.

© Transentia Pty. Ltd., 13/12/2002 10:34 PM 6

From this page, it is possible to examine the WSDL Service Description file that OC4J
automatically. Follow the Service Description link to be presented with a listing of the
WSDL file similar to this:

Use the browser’s Back button to return to the previous page.

The “IHaikuWS endpoint” page also provides a link for each method that is a part of the
Web Service’s interface.

Follow the getHaiku link. You will be taken to a page resembling the following
screenshot.

Click on the Invoke button. This will invoke the interface function and result in a new
window that displays the SOAP response message as shown below:

© Transentia Pty. Ltd., 13/12/2002 10:34 PM 7

The “IHaikuWS endpoint” page also provides links to allow you to download auto-
generated code (source and binary Java Archive) that may make the task of writing
client applications easier.

Custom Serialization

In the previous section, you built a simple WebService that relied on the SOAP
infrastructure’s standard behaviour for serialization of data across the network (for this
simple example, the standard infrastructure is actually sufficient…but it is good to look at
more in-depth issues). In this section you will augment that service to use custom
serialization and provide a ‘proper’ client application that will show how to
programmatically access the augmented WebService.

Create the Custom Serializer for the Haku JavaBean

To illustrate the mechanisms SOAP possesses for dealing with complex datatypes, this
session will create and use a custom serializer to “hand craft” the “on-the-wire”
representation of a Haiku JavaBean instance. This is probably the hardest aspect of
using SOAP.

Although not strictly required in this situation, it is useful to know how this can be done.

Edit the file C:\OC4JWS\Haikus\src\transentia\HaikuSerializer.java. The content
should be as follows:

package transentia;

import java.io.*;
import org.apache.soap.encoding.soapenc.*;
import org.apache.soap.rpc.*;
import org.apache.soap.util.*;
import org.apache.soap.util.xml.*;
import org.w3c.dom.*;

public class HaikuSerializer
 implements Serializer, Deserializer
 {
 private final String
 htag = "HAIKU_DATA",
 atag = "AUTHOR_DATA";

© Transentia Pty. Ltd., 13/12/2002 10:34 PM 8

 public void marshall(String inScopeEncStyle, Class javaType,
 Object src, Object context, Writer sink,
 NSStack nsStack,
 XMLJavaMappingRegistry xjmr,
 SOAPContext ctx)
 throws IllegalArgumentException, IOException
 {
 nsStack.pushScope();

 SoapEncUtils.generateStructureHeader
 (inScopeEncStyle, javaType, context, sink, nsStack, xjmr);
 sink.write(StringUtils.lineSeparator);

 Haiku h = (Haiku)src;

 Parameter param =
 new Parameter(htag, java.lang.String.class,
 h.getHaiku(), null);
 xjmr.marshall(inScopeEncStyle, Parameter.class, param, null,
 sink, nsStack, ctx);
 sink.write(StringUtils.lineSeparator);

 param = new Parameter(atag, java.lang.String.class,
 h.getAuthor(), null);
 xjmr.marshall(inScopeEncStyle, Parameter.class, param, null,
 sink, nsStack, ctx);
 sink.write(StringUtils.lineSeparator);

 sink.write("</" + context + '>');

 nsStack.popScope();
 }

 public Bean unmarshall(String inScopeEncStyle,
 QName elementType,
 Node src, XMLJavaMappingRegistry xjmr,
 SOAPContext ctx)
 throws IllegalArgumentException
 {
 Element root = (Element)src;
 Element tempEl = DOMUtils.getFirstChildElement(root);
 Haiku h;

 try
 {
 h = (Haiku)Haiku.class.newInstance ();
 }
 catch (Exception e)
 {
 throw new IllegalArgumentException
 ("Problem instantiating bean: " + e.getMessage());
 }

 while (tempEl != null)
 {
 Bean paramBean = xjmr.unmarshall
 (inScopeEncStyle, RPCConstants.Q_ELEM_PARAMETER,
 tempEl, ctx);
 Parameter param = (Parameter)paramBean.value;
 String tagName = tempEl.getTagName();

© Transentia Pty. Ltd., 13/12/2002 10:34 PM 9

 if (htag.equals(tagName))
 h.setHaiku ((java.lang.String)param.getValue());

 else if (atag.equals(tagName))
 h.setAuthor ((java.lang.String)param.getValue());
 tempEl = DOMUtils.getNextSiblingElement(tempEl);
 }

 return new Bean(Haiku.class, h);
 }
 }

Points to Note

n The marshall method is responsible for creating a fragment of XML representing the
instance data of the Haiku JavaBean that is passed in to the method as the ‘src’
parameter. The unmarshall operation performs the inverse operation: parsing the
received XML document fragment and instantiating a corresponding Haiku
JavaBean instance.

Create the Java Client

Edit the file C:\OC4JWS\Haikus\src\transentia\HaikuSerializer.java. The content
should be as follows:

package transentia.client;
import org.apache.soap.encoding.soapenc.*;
import org.apache.soap.encoding.*;
import org.apache.soap.util.xml.*;
import org.apache.soap.*;
import org.apache.soap.rpc.*;
import java.util.*;
import java.net.*;
import transentia.*;

public class HaikusClient
 {
 public static void main(String[] args)
 throws Exception
 {
 URL endpointURL =
 new URL("http://127.0.0.1:8988/haikuws/HaikuWS");
 Call call = new Call();
 call.setTargetObjectURI("transentia-IHaikuWS");
 call.setMethodName("getHaiku");

 call.setParams(new Vector());

 call.setEncodingStyleURI(Constants.NS_URI_SOAP_ENC);
 SOAPMappingRegistry smr = new SOAPMappingRegistry();
 HaikuSerializer hs = new HaikuSerializer();
 smr.mapTypes(Constants.NS_URI_SOAP_ENC,
 new QName("http://transentia/IHaikuWS.xsd",
 "transentia_Haiku"),
 transentia.Haiku.class, hs, hs);
 call.setSOAPMappingRegistry(smr);

© Transentia Pty. Ltd., 13/12/2002 10:34 PM 10

 Response response = call.invoke(endpointURL, "");
 String returnVal = null;

 if (response.generatedFault())
 {
 Fault fault = response.getFault();
 returnVal = fault.getFaultCode() + " " +
 fault.getFaultString();
 }
 else
 {
 Parameter result = response.getReturnValue();
 returnVal = ((Haiku)result.getValue()).toString();
 }

 System.out.println(returnVal.toString());
 }
 }

Points to Note

n The client application takes care to register a custom serializer class for the
transentia.Haiku JavaBean with its SOAPMappingRegistry object.

Create the Web Application Deployment Descriptor

The WebServicesAssembler tool automatically generates a default deployment
descriptor for the WebService. Since this section of the exercise is all about modifying
the SOAP system’s default behaviour, you will need to create and install a deployment
descriptor “by hand” so that the new behaviour is incorporated appropriately.

Edit the skeleton deployment descriptor file C:\OC4JWS\Haikus\src\web.xml to
become as follows:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app
 PUBLIC
 '-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN'
 'http://java.sun.com/dtd/web-app_2_3.dtd'>

<web-app>

<servlet>
 <servlet-name>
 stateless Java web service - /haikuws/HaikuWS
 </servlet-name>
 <servlet-class>
 oracle.j2ee.ws.StatelessJavaRpcWebService
 </servlet-class>
 <init-param>
 <param-name>class-name</param-name>
 <param-value>transentia.HaikuWS</param-value>
 </init-param>
 <init-param>
 <param-name>interface-name</param-name>
 <param-value>transentia.IHaikuWS</param-value>
 </init-param>

© Transentia Pty. Ltd., 13/12/2002 10:34 PM 11

 <init-param>
 <param-name>custom-bean-qname</param-name>
 <param-value>
transentia.Haiku,http://transentia/IHaikuWS.xsd,transentia_Haiku
,transentia.HaikuSerializer,transentia.HaikuSerializer
 </param-value>
 </init-param>
</servlet>

<servlet-mapping>
 <servlet-name>
 stateless Java web service - /haikuws/HaikuWS
 </servlet-name>
 <url-pattern>/HaikuWS</url-pattern>
</servlet-mapping>

<welcome-file-list>
 <welcome-file>index.html</welcome-file>
</welcome-file-list>

</web-app>

Points to Note

n Note that the contents for <param-value> elements must be given on one line only.
Any line breaks you see here are for formatting purposes only.

n Also note how the oracle.j2ee.ws.StatelessJavaRpcWebService servlet is
configured to know that the class transentia.Haiku should be marshalled and
unmarshalled by a custom serializer class: transentia.HaikuSerializer.

Build and Execute II

Note: ensure that your OC4J server is running before attempting this stage. If you have
forgotten how to run the server, see the earlier section “Build and Execute I.”

As before, you have been supplied with a number of build/execute scripts for the client
application.

Build the new WebService

Open a new Command Prompt window and execute the following sequence:

> cd /d C:\OC4JWS\Haikus
> bin\undeploy.cmd
> bin\buildcustom.cmd
> bin\deploy.cmd

Note: you may want to briefly examine the bin\buildcustom.cmd file…it packages up
the many steps necessary to unpack, modify and repackage the default ear file
produced by the WebServicesAssembler tool. The script has a fair amount of work to do
and so is quite complex.

© Transentia Pty. Ltd., 13/12/2002 10:34 PM 12

Build the Client Application

Open a new Command Prompt window and execute the following command sequence:

> cd /d C:\OC4JWS\HaikusClient
> bin\build.cmd

Run the Client Application

In the same Command Prompt window as before, Issue the command:

> bin\run.cmd

You should see a result similar to what is shown below:

Verification

To double-check that your custom serialization mechanism is actually being used, repeat
the activities described in the earlier “Investigate the Deployed Service” section.

You should receive a reply message similar to the following:

Note the difference between the formatted data contained in the reply message you
received earlier and the message that you have obtained this time.

